Effect of particle size and content of the metal on the oxygen reduction by silver–ion exchanger nanocomposites
Abstract
This paper reports obtaining the new silver-containing nanocomposites based on the ion
exchangers with the controlled size of metal nanoparticles and metal content. The redox sorption of
oxygen dissolved in water by silver-containing nanocomposites with metal particles of different sizes and
metal content is considered. The kinetic study showed that the rate of molecular oxygen reduction
increases with the decrease of silver nanoparticles size and silver content in the NC.
Downloads
References
2.Poole Ch., Owens F. Introduction to Nanotechnology. New Jersey: Wiley, 2003. 400 p.
3.Pomogailo A.D., Rozenberg A.S. Uflyand, I.E. Metal Nanoparticles in Polymers.
Khimiya: Moscow, 2000. 672 p.
4.Corain B., M. Zecca, P. Canton, P. Centomo. Synthesis and catalytic activity of metal
nanoclusters inside functional resins: an endeavour lasting 15 years // Phil. Trans. R. Soc.
A. 2010. V. 368. P. 1495–1507.
5.Zolotukhina E.V., Kravchenko T.A. Synthesis and kinetics of growth of metal
nanoparticles inside ion-exchange polymers // Electrochim. Acta. 2011. V. 56. P. 3597–
3604.
6.Yaroslavtsev A.B., Nikonenko V.V. Ion-exchange membrane materials: properties,
modification, and practical application // Nanotechnol. Russia. 2009. V. 4. P. 137-159.
7.Sergeev G.B. Nanochemistry. Moscow: Mosc. Gos. Univ., 2003. 288 p.
8.Domènech B., Bastos-Arrieta J., Alonso A., Macanás J., Muñoz M., and Muraviev
D.N. // Ion Exchange Technologies / Ed. by A. Kilislioğlu. Rijeka: InTech, 2012. P. 35-72.
9.Ruiz P., Muñoz M., Macanás J., Muraviev D.N. Intermatrix synthesis of polymerstabilized
PGM@Cu core–shell nanoparticles with enhanced electrocatalytic properties //
React. Funct. Polym. 2011. V. 71. P. 916-924.
10. Kravchenko T.A., Chayka M.Yu., Konev D.V., Polyanskiy L.N., Krysanov V.A. The
influence of the ion-exchange groups nature and the degree of chemical activation by silver
on the process of copper electrodeposition into the ion exchanger // Electrochim. Acta.
2007. V. 53. P. 330-336.
11. Kravchenko T., Khorolskaya S., Polyanskiy L., Kipriyanova E. Investigation of the
mass transfer process in metal-ion-exchanger nanocomposites // Nanocomposites:
Synthesis, Characterization and Applications / Ed. by X. Wang. N.Y.: Nova Science
Publishers, 2013. P. 329-348.
12. Sarkar S., Chatterjee P.K., Cumball L.H., SenGupta A.K. Hybrid ion exchanger
supported nanocomposites: Sorption and sensing for environmental applications // Chem.
Eng. J. 2011. V. 166. P. 923–931.
13. Sarkar S., Guibal E., Quignard F., SenGupta A.K. Polymer-supported metals and
metal oxide nanoparticles: synthesis, characterization, and applications // J Nanopart. Res.
2012. V. 14: 715.
14. Kuhlmann A., Roessner F., Schwieger W., Gravenhorst O., Selvam T. New
bifunctional catalyst based on Pt containing layered silicate Na-ilerit // Catal. Today. 2004.
V. 97. P. 303–306.
15. Wang Q., Yu H., Zhong L., Liu J., Sun J., Shen J. Incorporation of silver ions into
ultrathin titanium phosphate films: In situ reduction to prepare silver nanoparticles and
their antibacterial activity // Chem. Mater. 2006. V. 18. P. 1988-1994.
16. Kravchenko T.A., Polyanskiy L.N., Krysanov V.A., Zelensky E.S., Kalinitchev
A.I., Hoell W.H. Chemical precipitation of copper from copper–zinc solutions onto
selective sorbents // Hydromet. 2009. V. 95. P. 141–144.
17. Kravchenko T.A., Polyanskiy L.N., Kalinichev A.I., Konev D.V. Metal–Ion
Exchanger Nanocomposites. Moscow: Nauka, 2009. 391 p.
18. Kozhevnikov A.V. Electron-Ion Exchangers: A New Group of Redoxites. N.Y.:
Wiley, 1975. 129 p.
19. Sinha V., Li K. Alternative methods for dissolved oxygen removal from water: a
comparative study // Desalination. 2000. V. 12. P. 155-164.
20. Shi W., Cui C., Zhao L., Yu Sh., Yun X. Removal of dissolved oxygen from water
using a Pd-resin based catalytic reactor // Front. Chem. Eng. China. 2009. V. 3. P. 107–
111.
21. Grzelczak M., Vermant J., Furst E.M., Liz-Marzan L.M. Directed self-assembly of
nanoparticles // ACS Nano. 2010. V. 4. P. 3591–3605.
22. Rostovshchikova T.N., Smirnov V.V., Kozhevin V.M., Yavsin D.A., Gurevich S.A.
Intercluster interactions in catalysis by metal nanoparticles // Ross. Nanotekhnol. 2007.
V.2 (1-2). P.47-60.
23. Nikolskiy B.P. Chemists Manual. Moscow-Leningrad: Khimiya, 1964. Vol. 3. pp.
229-230.
24. Guo A., Yin X., Fan K., Dai W.L. Influence of copper precursors on the structure
evolution and catalytic performance of Cu/HMS catalysts in the hydrogenation of dimethyl
oxalate to ethylene glycol // Appl. Catal. 2010. V. 377. P. 128-133.
25. Yang Y., Zhou Y. Particle size effects for oxygen reduction on dispersed silver +
carbon electrodes in alkaline solution // J. Electroanal. Chem. 1995. V. 397. P. 271-278.
26. Sviridov V.V. Chemical Deposition of Metals from Aqueous Solutions. Minsk:
Universitetskoe, 1987. 270 p.
27. Peshkov S.V., Kravchenko T.A., Konev D.V., Kipriyanova E.S., Chepkova S.P. //
Sorbtsion. Khromatogr. Protsessy. 2009. V. 9. I. 2. P. 221-232.
28. Zhang X., Qu Zh.,Yu F.,Wang Y., Zhang X. Effects of pretreatment atmosphere
and silver loading on the structure and catalytic activity of Ag/SBA-15 catalysts // J. Mol.
Catal. A. 2013. V. 370. P. 160–166.