Sorption capacity of ionotropic alginate hydrogels based on elemental analysis
Abstract
The article presents the results of a theoretical and experimental study of the sorption capacity of ionotropic hydrogels based on biopolymer polysaccharide chains of sodium alginate and cross-linked with divalent cations of various metals. The study of the microstructure and the elemental analysis of the hydrogels were performed by means of electron microscopy and energy dispersive microanalysis together with combinatorial methods. The study determined two types of sorption effects that can occur in sodium alginate hydrogels stabilized by alkaline earth methods. The capacity of chemical sorption of heavy metals bound with alginate chains by coordinate covalent bonds was determined experimentally and calculated using combinatorial methods. Based on the results of the elemental analysis of the hydrogels, we assessed the contribution of physical sorption of ion associates, which can be retained near alginate chains due to weaker bonds. An analysis of strontium alginate demonstrated that the introduction of carbon nanotubes in the structure of the hydrogel changes their sorption capacity and primarily increases the size of physically absorbed molecules
Downloads
References
Bi D., Yang X., Yao L., Hu Z., Li H., Xu X., Lu J. Potential Food and Nutraceutical Applications of Alginate: A Review. Mar. Drugs. 2022; 20: 564. https://doi.org/10.3390/md20090564
Mohammed A.S.A., Naveed M., Jost N. Polysaccharides; Classification, Chemical Properties, and Future Perspec-tive Applications in Fields of Pharmacolo-gy and Biological Medicine (A Review of Current Applications and Upcoming Poten-tialities) J. Polym. Environ. 2021; 29: 2359-2371. https://doi.org/10.1007/s10924-021-02052-2
Mahmood A., Patel D., Hickson B., DesRochers J., Hu X. Recent Progress in Biopolymer-Based Hydrogel Materials for Biomedical Applications Int. J. Mol. Sci. 2022; 23: 1415. https://doi.org/10.3390/ijms23031415
Mamedov E.I., Dergunova Е.S., Kalmykova E.N. Possibilities for the bio-medical application of modified pectins Sorbtsionnye i khromatograficheskie protsessy. 2021; 21(1): 77-85. (In Russ.) https://doi.org/10.17308/sorpchrom.2021.21/3222
Inoue K., Parajuli D., Ghimire K.N., Biswas B.K., Kawakita H., Oshima T., Ohto K. Biosorbents for Removing Haz-ardous Metals and Metalloids. Materials. 2017; 10: 857. https://doi.org/10.3390/ma10080857
Kong C., Zhao X., Li Y., Yang S., Chen Y.M., Yang Z. Ion-Induced Synthesis of Alginate Fibroid Hydrogel for Heavy Metal Ions Removal. Front. Chem. 2020; 7: 905. https://doi.org/10.3389/fchem.2019.00905
Mironenko N.V., Selemenev V.F., Ishchenko U.S., Shkutina I.V. Equilibrium of sorption of Tribulus Terrestris steroid saponins on a natural polymer sorbent – chitosan Sorbtsionnye i khromatograficheskie protsessy. 2024; 23(4): 667-680. (In Russ.) https://doi.org/10.17308/sorpchrom.2023.23/11573
Nurmukhametova K.R., Lebedeva E.L., Petrova Yu.S., Neudachina L.K. A study of arginine sorption by sulfoethylated chitosan followed by a capillary electrophoresis Sorbtsionnye i khromatograficheskie protsessy. 2022; 22(6): 856-868. (In Russ.) https://doi.org/10.17308/sorpchrom.2022.22/10892
Brezhneva T.A., Mironenko N.V., Shkutina I.V., Selemenev V.F. Sorption interactions in system «saponin Qullaja Sa-ponaria Molina-hitozan» Sorbtsionnye i khromatograficheskie protsessy. 2015; 15(1): 74-84. (In Russ.)
Studenikina L.N., Korchagin V.I., Iushin V.O., Melnikov A.A. Influence of the filler nature on the properties of the composite "polyvinyl alcohol: polysaccha-ride" Sorbtsionnye i khromatograficheskie protsessy. 2021; 21(1): 111-118. (In Russ.) https://doi.org/10.17308/sorpchrom.2021.21/3226
Bogdanova L.R., Zelenikhin P.V., Makarova A.O. Alginate-Based Hydrogel as Delivery System for Therapeutic Bacte-rial RNase Polymers. 2022; 14: 2461. https://doi.org/10.3390/polym14122461
Bogdanova, L.R.; Makarova, A.O.; Zueva, O.S.; Zakharova, L.Y.; Zuev, Y.F. Encapsulation of diagnostic dyes in the polysaccharide matrix modified by carbon nanotubes Russ. Chem. Bull. 2020; 69(3): 590-595. https://doi.org/10.1007/s11172-020-2803-x
Makarova A.O., Derkach S.R., Khair T., Kazantseva M.A., Zuev Y.F., Zueva O.S. on-Induced Polysaccharide Ge-lation: Peculiarities of Alginate Egg-Box Association with Different Divalent Cati-ons. Polymers. 2023; 15: 1243. https://doi.org/10.3390/polym15051243
Zueva O.S., Khair T., Derkach S.R., Kazantseva M.A., Zuev Y.F. Ions-Induced Alginate Gelation According to Elemental Analysis and a Combinatorial Approach. J. Compos. Sci. 2023; 7: 0286. https://doi.org/10.3390/ijms242216201
Zueva O.S., Khair T., Kazantseva M.A., Latypova L., Zuev Y.F. Ions-Induced Alginate Gelation According to Elemental Analysis and a Combinatorial Approach. Int. J. Mol. Sci. 2023; 24: 16201. https://doi.org/10.3390/ijms242216201
Usov A.I. Alginic acids and algi-nates: analytical methods used for their es-timation and characterisation of composi-tion and primary structure. Russ. Chem. Rev. 1999; 68(11): 957-966. https://doi.org/10.1070/RC1999v068n11ABEH000532
Gómez-Ordóñez E., Rupérez P. FTIR-ATR spectroscopy as a tool for poly-saccharide identification in edible brown and red seaweeds. Food Hydrocoll. 2011; 25: 1514-1520. https://doi.org/10.1016/j.foodhyd.2011.02.009
Park J., Lee S.J., Lee H., Park S.A., Lee J.Y. Three dimensional cell printing with sulfated alginate for improved bone morphogenetic protein-2 delivery and oste-ogenesis in bone tissue engineering. Car-bohydr. Polym. 2018; 196: 217-224. https://doi.org/10.1016/j.carbpol.2018.05.048
Hecht H., Srebnik S. Structural Characterization of Sodium Alginate and Calcium Alginate. Biomacromolecules. 2016; 17: 2160-2167. https://doi.org/10.1021/acs.biomac.6b00378
Zueva O.S., Gubaidullin A.T., Makarova A.O., Bogdanova L.R., Zakha-rova L.Ya., Zuev Yu.F. Structural features of composite protein-polysaccharide hy-drogel in the presence of a carbon nano-material. Russ. Chem. Bull. 2020; 69(3): 581-589. https://doi.org/10.1007/s11172-020-2802-y
Bogdanova L.R., Rogov A.M., Zue-va O.S., Zuev Y.F. Lipase enzymatic mi-croreactor in polysaccharide hydrogel: structure and properties. Russ. Chem. Bull. 2019; 68(2): 400-404. https://doi.org/10.1007/s11172-019-2399-1
Grant G. T., Morris E. R., Rees D. A., Smith P. J. C., Thom D. Biological in-teractions between polysaccharides and divalent cations: The egg-box model. FEBS Lett. 1973; 32: 195-198. https://doi.org/10.1016/0014-5793(73)80770-7
Sikorski P., Mo F., Skjåk-Bræk G., Stokke B.T. Evidence for Egg-Box-Compatible Interactions in Calcium-Alginate Gels from Fiber X-ray Diffrac-tion. Biomacromolecules 2007; 8: 2098-2103. https://doi.org/10.1021/bm0701503
Hecht H., Srebnik S. Sequence-dependent association of alginate with so-dium and calcium counterions. Carbohydr. Polym. 2017; 157: 1144-1152. https://doi.org/10.1016/j.carbpol.2016.10.081
Cao L., Lu W., Mata A., Nishinari K., Fang Y. Egg-box model-based gelation of alginate and pectin: A review. Carbo-hydr. Polym. 2020; 242: 116389. https://doi.org/10.1016/j.carbpol.2020.116389
Hu C., Lu W., Mata A., Nishinari K., Fang, Y. Ions-induced gelation of algi-nate: Mechanisms and applications. Int. J. Biol. Macromol. 2021; 177: 578–588. https://doi.org/10.1016/j.ijbiomac.2021.02.086
Agulhon P., Markova V., Robitzer M., Quignard F., Mineva T. Structure of Alginate Gels: Interaction of Diuronate Units with Divalent Cations from Density Functional Calculations. Biomacromole-cules 2012; 13:1899-1907. https://doi.org/10.1021/bm300420z.
Brus J., Urbanova M., Czernek J., Structure and Dynamics of Alginate Gels Cross-Linked by Polyvalent Ions Probed via Solid State NMR Spectroscopy. Biom-acromolecules. 2017; 18: 2478-2488. https://doi.org/10.1021/acs.biomac.7b00627
Perry T.D., Cygan R.T., Mitchell R. Molecular models of alginic acid: Interac-tions with calcium ions and calcite surfac-es. Geochim. Cosmochim. Acta. 2006; 70: 3508-3532. https://doi.org/10.1016/j.gca.2006.04.023
Hassan R.M. Prospective and com-parative Novel technique for evaluation the affinity of alginate for binding the alkaline-earth metal ions during formation the coor-dination biopolymer hydrogel complexes. Int. J. Biol. Macromol. 2020; 165: 1022-1028. https://doi.org/10.1016/j.ijbiomac.2020.09.155
Zhang X., Wang L., Weng L., Deng B. Strontium ion substituted alginate-based hydrogel fibers and its coordination bind-ing model. J. Appl. Polym. Sci. 2020; 137: 48571. https://doi.org/10.1002/app.48571
Montanucci P., Terenzi S., Santi C., Pennoni I., Bini V., Pescara T., Basta G., Calafiore R. Insights in Behavior of Varia-bly Formulated Alginate-Based Microcap-sules for Cell Transplantation. Biomed Res. Int. 2015; 2015: 965804. https://doi.org/10.1155/2015/965804
Zueva O.S., Makarova A.O., Zuev Yu.F. Materials Science Forum. 2019; 945: 522-527. https://doi.org/10.4028/www.scientific.net/msf.945.522
Gubaidullin A.T., Makarova A.O., Derkach S.R. Carbon Nanotubes in Com-posite Hydrogels Based on Plant Carbohy-drates. Polymers. 2022; 14: 2346. https://doi.org/10.3390/polym14122346
Makarova A.O., Derkach S.R., Kadyirov A.I. Supramolecular Structure and Mechanical Performance of κ-Carrageenan–Gelatin Gel. Polymers. 2022; 14: 4347. https://doi.org/10.3390/polym14204347
Alshehri R., Ilyas A.M., Hasan A., Arnaout A., Ahmed F., Memic A. Carbon Nanotubes in Biomedical Applications: Factors, Mechanisms, and Remedies of Toxicity. J. Med. Chem. 2016; 59: 8149-8167. https://doi.org/10.1021/acs.jmedchem.5b01770
De la Cruz E.F., Zheng Y., Torres E., Li W., Song W., Burugapalli K. Zeta Potential of Modified Multi-walled Carbon Nanotubes in Presence of poly (vinyl alco-hol) Hydrogel. Int. J. Electrochem. Sci. 2012; 7: 3577. https://doi.org/10.1016/s1452-3981(23)13979-4
Bajpai S.K., Sharma S. Investiga-tion of swelling/degradation behaviour of alginate beads crosslinked with Ca2+ and Ba2+ ions. React. Funct. Polym. 2004; 59: 129-140. https://doi.org/10.1016/j.reactfunctpolym.2004.01.002