Polymer chromato-desorption systems for creating aqueous media with a specific analytical concentration

  • Igor A. Platonov Korolev Samara National Research University, Samara
  • Irina M. Mukhanova Korolev Samara National Research University, Samara
  • Maksim Yu. Labaev Korolev Samara National Research University, Samara
Keywords: chromato-desorption systems (CDS), standard samples, static conditions, calibration mixtures.

Abstract

In this paper, we study polymer chromato-desorption systems (CDS) designed to create aqueous media with a known analyte content. The relevance of the study is due to the need for new methods of standardization of analytical measurements, ensuring higher correctness, accuracy and precision of the measurements performed.

The developed CDS are composite materials based on epoxy resin containing an analyte - a synthetic dye - sorbed on nanodispersed silicon dioxide. The main objective of the work was to study the kinetics of analyte release into water under static conditions. For this purpose, an experiment was conducted that included daily replacement of the water in which the CDS samples were located, followed by analysis of the concentration of the desorbed analyte by HPLC.

The results showed that the analyte desorption process obeys a power dependence, which allows predicting the concentration of the analyte in the aqueous medium at different stages of the CDS operation. It was found that the key factors influencing the rate and extent of analyte release are its chemical structure, hydrophilicity, initial availability and interaction with the polymer matrix. The highest analyte release was observed for Quinoline Yellow and Ponceau 4R, the lowest desorption rate was characterized by less polar triphenylmethane dyes, which is explained by their molecular features. The developed CDSs are highly stable and can be used as standard samples for calibrating chromatographic equipment. Their use in analytical chemistry will improve the accuracy of quantitative determination of various compounds, especially in complex matrix environments. Prospects for further research are related to optimizing the composition of CDSs, as well as studying their behavior under dynamic conditions in both ideal and non-ideal aqueous environments.

Downloads

Download data is not yet available.

Author Biographies

Igor A. Platonov, Korolev Samara National Research University, Samara

prof., grand Ph.D (technical sciences), Head of the department of chemistry, Samara National Research University, Samara, Russian Federation, pia@ssau.ru

Irina M. Mukhanova, Korolev Samara National Research University, Samara

candidate of Chemical Sciences. Associate Professor of the hemistry Department, Samara National Research University, Samara, Russian Federation, e-mail: mim042004@mail.ru

Maksim Yu. Labaev, Korolev Samara National Research University, Samara

the postgraduate student of the Department of Chemistry, Samara National Research University, Samara, Russian Federation, maxlabaev@gmail.com

References

ISO Guide 35-2015. Standartnye obrazcy. Obshchie i statisticheskie principy sertifikacii (attestacii). M: Standartinform, 2017. 65 p. (In Russ.)

GOST R 8.315-2019. Standartnye obrazcy sostava i svojstv veshchestv i materialov. Os-novnye polozheniya. M: Standartinform, 2020. 65 p. (In Russ.)

GOST R ISO 5725-1-2002. Tochnost' (pravil'nost' i precizionnost') metodov i rezul'ta-tov izmerenij. CHast' 1. Osnovnye polozheniya i opredeleniya. Vved. 01.11.2002. M.: IPK Izd-vo standartov, 2002. 31 p. (In Russ.)

GOST R ISO 3534-1-2019. Statisticheskie metody slovar' i uslovnye oboznacheniya. CHast' 1. Obshchie statisticheskie terminy i terminy, ispol'zuemye v teorii veroyatnostej M: Standartinform, 2020. 70 p. (In Russ.)

Dvorkin V.I. Metrologiya i obespechenie kachestva kolichestvennogo himicheskogo ana-liza. M.: Himiya, 2001. 263 p. (In Russ.)

GOST ISO Guide 34-2014. Obshchie tre-bovaniya k kompetentnosti izgotovitelej standartnyh obrazcov. M: Standartinform, 2019. 36 p.

Platonov I. A., Marilov S. V., Nikishin I. A., Arutyunov Yu. I., Minaxmetov R. A., Efimov E. G., Bry`ksin A. S., Labaev M. Yu., Patent RF, № 2020133259, 2020.

Platonov I. A., Nikishin I. A., Minaxmetov R. A., Chertenkov M. V., Patent RF, № 2022118576, 2022.

Platonov I. A., Nikishin I. A., Patent RF, № 2024124226, 2024.

Platonov I. A., Nikishin I. A., Patent RF, № 2024139314, 2024.

Yang B., Wang W., Zhang X., Chen F., Lu H. Nanomaterials. 2022; 12(14):2406. https://doi.org/10.3390/nano12142406

Liu Z., Zhang B. Coatings., 2022; 12: 13. https://doi.org/10.3390/coatings12111749

Yeasmin F., Mallik A.K., Chisty A.H. Heliyon. 2021; 7(1): 12. https://doi.org/10.1016/j.heliyon.2021.e05959

Alkayal N.S., Elsilk S.E. Environmental Sciences Europe., 2023; 35-45. https://doi.org/10.1186/s12302-023-00742-3

Hasan M., Sunet B. Applied Surface Sci-ence., 2025; 709: 13. https://doi.org/10.1016/j.colsurfa.2024.136070

Liu C., Mullins M., Hawkins S. ACS Ap-plied Materials & Interfaces. 2017; 10(1): 25. https://doi.org/10.1016/10.1021/acsami.7b16711

Larranaga, A., Lomora, M., Sarasua, J.R., Palivan, C.G., Pandit, A. Prog. Mater. Sci. 2017; 90: 325-357. https://doi.org/10.1016/j.pmatsci.2017.08.002

Tadic, M., Kralj, S., Jagodic, M., Hanzel, D., Makovec, D. Appl. Surf. Sci. 2014; 322: 255-264. https://doi.org/10.1016/j.apsusc.2014.09.181

Kreft, O., Skirtach, A.G., Sukhorukov, G.B., Mohwald, H. Adv. Mater. 2007; 19(20): 3142-3145. https://doi.org/10.1002/adma.200701977

Yang J., Chen Y., Zhao X. Journal of Pe-troleum Science and Engineering, 2022; 215: 8. https://doi.org/10.1016/j.petrol.2022.110616

Gong Z., Li N., Kang W. Fuel 2024; 364: 130945. https://doi.org/10.1016/j.fuel.2024.130945

Li H., Liu Z., Li Y., ACS Omega, 2021; 6: 19269-19280.

Li N., Cheng Q., Gong Z., Geoenergy Science and Engineering., 2023; 227: 7. https://doi.org/10.1016/j.geoen.2023.211782

Wang C., Li X., Cheng X., Geoenergy Science and Engineering. 2024; 232: 12. https://doi.org/10.1016/j.geoen.2023.212440

Cheng J., Wang Q., Ma R., Geoenergy Science and Engineering, 2022; 215; 13. https://doi.org/10.1016/j.geoen.2023.211861

Zhang, Y.F., Chen, W., Jing, M.M., Liu, S.Z., Feng, J.T., Wu, H., Zhou, Y.W., Zhang, X., Ma, Z.Q. Chem. Eng. J. 2019; 361: 1381-1391. https://doi.org/10.1016/j.cej.2018.10.132

Devi, N., Sarmah, M., Khatun, B., Maji, T.K., Adv Colloid Interfac 2017; 239: 136-145. https://doi.org/10.1016/j.cis.2016.05.009

Mondal, M.I.H., Saha, J., Rahman, M.A., J. Polym. Environ. 2020; 1-17. https://doi.org/10.1007/s10924-020-01931-4

Salaun, F., Lewandowski, M., Vroman, I., Bedek, G., Bourbigot, S., Polym. Degrad. Stabil. 2011; 96(1): 131-143. https://doi.org/10.1016/j.polymdegradstab.2010.10.009

Sun, X.X., Cameron, R.G., Bai, J.H., Food Hydrocolloids. 2019; 92; 69-73. https://doi.org/10.1016/j.foodhyd.2019.01.006

Biduski, B., Kringel, D.H., Colussi, R., Hackbart, H.C.D., Lim, L.T., Dias, A.R.G., Zavareze, E.D. Int. J. Biol. Macromol. 2019; 132: 300-307. https://doi.org/10.1016/j.ijbiomac.2019.03.203

Prabhakar, A.K., Potroz, M.G., Tan, E.L., Jung, H., Park, J.H., Cho, N.J., ACS Appl. Ma-ter. Interfaces. 2018; 10(34): 28428-28439. https://doi.org/10.1021/acsami.8b09952

Tong Lu. Journal of Cleaner Production. 2021; 294: 25. https://doi.org/10.1016/j.jclepro.2021.126270

Kolesnichenko, I. N., Platonov, I. A., Novikova, E. A., & Muhanova, I. M. Sorbtsionnye I Khromatograficheskie Protsessy, 2017; 17(3): 378-387. https://doi.org/10.17308/sorpchrom.2017.17/391 (In Russ.)

Gol`bert K. A., Vigdergauz M. S. Vvedenie v gazovuyu xromatografiyu 3-e izd., M.: Ximiya, 1990. 352 s., ISBN 5–7245–0412–X. (In Russ.)

National Center for Biotechnology Infor-mation. Collection of freely accessible chemi-cal information. Available at: https://pubchem.ncbi.nlm.nih.gov/ (accessed10.01.2025).

Gholamian F., Ghariban-Lavasani S., Polymer Bulletin., 2013; 70: 1677-1695. https://doi.org/10.1007/s00289-013-0938-8

Startsev, V.O. Klimaticheskaya stoykost’ polimernykh kompozitsionnykh materialov i zashchitnykh pokrytii v umerenno-teplom klimate: dissertaciya na soiskanie uchenoj doktora tekhnicheskikh nauk / Valeriy Oltgo-vich Startsev. Moscow, 2018. 308 p. (In Russ.)

Ismagilov, D. R. Poluchenie gazovyh potokov s postoyannoj koncentraciej organich-eskih i neorganicheskih letuchih soedinenij i ih ispol'zovanie v gazohromatograficheskom an-alize: special'nost' 05.11.11: dissertaciya na soiskanie uchenoj stepeni kandidata himich-eskih nauk / Ismagilov Dmitrij Ramazanovich. Samara, 2005. 150 p. (In Russ.)

Lepskij M.V., Platonov I.A., Kudryashov S.Yu. et al. Izvestiya vysshih uchebnyh zavedenij. Seriya: Himiya i himicheskaya tekhnologiya. – 2004. – T. 47, № 9. – S. P. 138-143. (In Russ.)

Published
2025-11-08
How to Cite
Platonov, I. A., Mukhanova, I. M., & Labaev, M. Y. (2025). Polymer chromato-desorption systems for creating aqueous media with a specific analytical concentration. Sorbtsionnye I Khromatograficheskie Protsessy, 25(4), 520-539. https://doi.org/10.17308/sorpchrom.2025.25/13280

Most read articles by the same author(s)