Governing the separation selectivity of carbon acids on a novel poly(styrene-divinylbenzene)-based stationary phase in mixed-mode HPLC

  • Grigorii S. Maksimov Lomonosov Moscow State University, Moscow, Russian Federation
  • Ilya A. Dubinin Lomonosov Moscow State University, Moscow, Russian Federation
  • Anastasia V. Gorbovskaia Lomonosov Moscow State University, Moscow, Russian Federation
  • Andrei V. Pirogov Lomonosov Moscow State University, Moscow, Russian Federation
  • Oleg A. Shpigun Lomonosov Moscow State University, Moscow, Russian Federation
  • Alla V. Chernobrovkina Lomonosov Moscow State University, Moscow, Russian Federation
Keywords: hydrophilic interaction liquid chromatography, ion chromatography, ion exchange, electrostatic interac-tions, anion exchangers, poly (styrene-divinylbenzene), carbon acids, mixed-mode.

Abstract

The ion-exchange features of a new multifunctional polymer column in HILIC mode were examined by varying the mobile phase pH and counter ion concentration. A significant decrease in the column anion-exchange capacity was demonstrated in the range of  2.85−5.76 which was attributed to the presence of secondary and tertiary amino groups in the functional layer. The k’-pH trends in the corresponding range were built for different organic acids ( 1−5) additionally the relative contributions of the ion-exchange to the overall retention were determined by eluting ion concentration altering. A decrease in the retention of anions and acids with  <4 and an increase for acids with >4 was shown with rising pH. The ion-exchange impact in the retention of the latter ones significantly decreased by concentration rise at   2.85, while the former being predominantly retained by the ion-exchange mechanism in the entire pH range. For such a high-capacity anion exchangers, the type of the k’−pH dependence was shown to be mostly determined by the analyte state, which in its turn depends on the  and  values. Mobile phase of рН  pKa was found to be the most appropriate for separation of acids, providing retention by different mechanisms and allows practitioners to master electrostatic interactions by varying the concentration of the eluting ion. A mixture of 5 acids was entirely separated in five minutes with an efficiency of up to 32 000 plates/m in mixed-mode HPLC. A beneficial option of ionizable compounds separation on a novel polymer multifunctional column with no ion chromatography equipment being engaged has been shown in this work.

Downloads

Download data is not yet available.

Author Biographies

Grigorii S. Maksimov, Lomonosov Moscow State University, Moscow, Russian Federation

the postgraduate student, Junior Researcher, department of Analytical chemistry, Lomonosov Moscow State University, Chemistry Department, Moscow, Russia

Ilya A. Dubinin, Lomonosov Moscow State University, Moscow, Russian Federation

student, department of Analytical chemistry, Lomonosov Moscow State University, Chemistry Department, Moscow, Russia

Anastasia V. Gorbovskaia, Lomonosov Moscow State University, Moscow, Russian Federation

Researcher, Ph.D (chemistry), department of Analytical chemistry, Lomonosov Moscow State University, Chemistry Department, Moscow, Russia

Andrei V. Pirogov, Lomonosov Moscow State University, Moscow, Russian Federation

Professor, Dr.Sci. (chemistry), department of Analytical chemistry, Lomonosov Moscow State University, Chemistry Department, Moscow, Russia

Oleg A. Shpigun, Lomonosov Moscow State University, Moscow, Russian Federation

Corresponding Member of the Russian Academy of Sciences, Professor, Dr.Sci. (chemistry), department of Analytical chemistry, Lomonosov Moscow State University, Chemistry Department, Moscow, Russia

Alla V. Chernobrovkina, Lomonosov Moscow State University, Moscow, Russian Federation

associate prof., Ph.D (chemistry), department of Analytical chemistry, Lomonosov Moscow State University, Chemistry Department, Moscow, Russia, E-mail: chernobrovkina@analyt.chem.msu.ru

References

Dejaegher B., Vander Heyden Y. J. Sep. Sci. J Sep Sci, 2010; 33(6-7): 698-715.

Zatirakha A. V., Smolenkov A.D., Shpigun O.A. Anal. Chim. Acta. 2016; 904: 33-50.

Chikurova N.Y., Gorbovskaia A.V., Stavrianidi A.N., Fedorova E.S., Shemyakina A.O., Buryak A.K., Uzhel A.S., Chernobrovkina A.V., Shpigun O.A. J. Anal. Chem. 2023; 78(7): 637-647

Gorbovskaia A.V., Kvachenok I.K., Stavrianidi A.N., Uzhel A.S., Shpigun O.A. Microchem. J. 2024; 199: 110075.

McCalley D.V. Journal of Chromatography A. 2017; 1523: 49-71.

Kawachi Y. J. Chromatogr. A. 2011; 1218(35): 5903-5919.

Iverson C.D., Gu X., Lucy C.A. J. Chromatogr. A. 2016; 1458: 82-89.

Khrisanfova A., Smagina M., Maksimov G., Tsizin G., Shpigun O., Chernobrovkina A. J. Chromatogr. A. 2025; 1758: 466201.

Shemiakina A., Xie A., Maksimov G., Chernobrovkina A. LC-GC North Am. 2024; International: 8-18.

Maksimov G.S., Shemiakina A. O., Uzhel A.S., Chernobrovkina A.V. Sorbtsionnye i khromatograficheskie protsessy. 2024; 24(2): 304-320.

McCalley D.V. J. Chromatogr. A. 2018; 1534: 64-74.

Škeříková V., Jandera P. J. Chromatogr. A. 2010; 1217(51): 7981-7989.

Huang Y., Tian Y., Zhang Z., Peng C.. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2012; 905: 37-42.

Chernobrovkina A.V., Kryzhanovskaya D.S., Uzhel A.S., Tsizin G.I., Shpigun O.A. Industrial laboratory. Diagnostics of materials. 2025; 91(8): 7-15.

Gorbovskaya A.V., Popkova E.K., Uzhel A.S., Shpigun O.A., Zatirakha A.V. J. Anal. Chem. 2023; 78(6): 748-758.

Espinosa S., Bosch E., Roses M. Anal. Chem. 2000; 72(21): 5193-5200.

. Gagliardi L.G., Castells C.B., Rafols C., Roses M., Bosch E. Anal. Chem. 2007; 79(8): 3180-3187.

Subirats X., Casanovas L., Redon L., Roses M. Adv. Sample Prep., 2023; 6: 100063.

Horváth C., Melander W., Molnár I. Anal. Chem. 1977; 49(1): 142-154.

Alvarez-Segura T., Subirats X., Rosés M. Anal. Chim. Acta. 2019; 1050: 176-184.

Li R., Huang J. J. Chromatogr. A. 2004; 1041(1-2): 163-169.

Cox G.B., Stout R.W. J. Chromatogr. A. 1987; 384: 315-336.

Jovanović M., Stojanović B.J. J. Chromatogr. A. 2013; 1301: 27-37.

Christopherson M.J., Yoder K.J., Hill J.T. J. Liq. Chromatogr. Relat. Technol. 2006; 29(17): 2545-2558.

Qiu J., Craven C., Wawryk N., Carroll K., Li X-F. J. Environ. Sci. (China). 2022; 117: 190-196.

Published
2025-12-16
How to Cite
Maksimov, G. S., Dubinin, I. A., Gorbovskaia, A. V., Pirogov, A. V., Shpigun, O. A., & Chernobrovkina, A. V. (2025). Governing the separation selectivity of carbon acids on a novel poly(styrene-divinylbenzene)-based stationary phase in mixed-mode HPLC. Sorbtsionnye I Khromatograficheskie Protsessy, 25(5), 675-686. https://doi.org/10.17308/sorpchrom.2025.25/13417