Carbon nanotubes as sorbents for the separation of ethylene glycol and potassium chloride
Abstract
Currently, carbon nanotubes (CNTs) are promising materials due to high sorption properties. New methods for the separation of the most important task of analytical chemistry. The authors studied the efficiency of carbon nanotubes as adsorbents for the separation of ethylene glycol (EG) and potassium chloride
As sorbents used multiwall carbon nanotubes Dealtom production of "Nanotechnology Center" (Russia). Weigh 0.1 g of CNT mass was placed in a flask and filled with 100 ml of distilled water. The solution was sonicated using a ultrasonic device MEF91. Then 10 ml were collected and the resulting suspension was added with ethylene glycol (or potassium chloride, or potassium chloride + ethylene glycol) to the desired concentration. This system EG – water – CNT once again subjected to ultrasonic treatment. The resulting suspension was placed in a shaker-incubator ES-20 and stirred for 4 hours at 200C. Than suspension is centrifuged, the concentration of EG supertanate determined by redox titration; the concentration of KCl by flame photometry. The experiment showed that ethylene glycol effectively adsorbed CNTs Dealtom, the degree of extraction of the aqueous solution nanotubes is 83 - 91%. In contrast, virtually no potassium chloride sorbed carbon nanotubes.
Relatively high values of the separation of EG ratios and KCl and the degree of extraction of ethylene glycol allow us to consider the carbon nanotubes as effective sorbents for separation of aqueous salt solutions of EG and extraction of EG.
Downloads
References
Baughman R.H., Zakhidov A.A., de Heer W.A., Science, 2002, Vol. 297, No 5582, pp. 787-792. DOI: 10.1126/science.1060928.
2.
D'jachkov P.N., Jelektronnye svojstva i primenenie nanotrubok. M., Binom Lab. Znanij, 2011, 488 p.
3.
Saito R., Dresselhaus G., Dresselhaus M.S., Physical Properties of Carbon Nanotubes, London, Imperial College Press, 1998, 259 p.
4.
Harlamova M.V., Physics-Uspekhi, 2013, Vol. 183, No 11, pp. 1145-1174.
5.
Badamshina Je.R., Gafurova M.P., Jestrin Ja.I., Uspekhi Khimii, 2010, Vol. 79, No 11, pp. 1027-1064.
6.
Irzhak V.I., Uspekhi Khimii, 2011, Vol. 80, No 8, pp. 819-840.
7.
Potschke P. Polymer-carbon nanotube composites. Edited by T. McNally. Oxford, Cambridge, Philadelphia, New Delhi, 2011, 805 р.
8.
Xie H., Chen L., J. Chem. Eng. Data, 2011, Vol. 56, No 4, pp. 1030-1041. DOI: 10.1021/je101026j.
9.
Fujii M. et al., Phys. Rev. Lett, 2005, Vol. 95, No 6, pp. 065502. DOI: 10.1103/PhysRevLett.95.065502.
10.
Jha N., Ramaprabhu S., J. Appl. Phys, 2009, Vol. 106, No 8, pp. 084317. DOI: 10.1063/1.3240307.
11.
Patel H.E., Anoop K.B., Sundararajan T., Das S.K., Bull. Mater. Sci, 2008, Vol. 31, No 3, pp. 387-390.
12.
Liu M.S.. Lin M.C.. Huang I.T., Wang C.C., Int. Commun. Heat Mass Transfer., 2005,Vol. 32, No 9, pp. 1202-1210. DOI:10.1016/j.icheatmasstransfer.2005.05.005.
13.
Gaska R.A. Patent US, no 3359076 A, 1967.
14.
Krizhanovskaja O.O. et al., Sorbtsionnye i khromatograficheskie protsessy, 2014, Vol. 14, No 5, рр. 784-794.
15.
HaeRi J., JinHwan P., MinYoung S., J. Ind. Eng. Chem, 2013, Vol. 19, pp. 849-853.