Surface modification of channel microchip with electrochemical detection for the determination of biologically active substances

  • Andrey V. Nikolaev the post-graduate student of organic chemistry department of chemical faculty, St. Petersburg state university, St. Petersburg
  • Ludmila A. Kartsova Dr.Sc.Chem. the professor of organic chemistry department of chemical faculty, St. Petersburg state university, St. Petersburg, e-mail: kartsova@gmail.com
Keywords: microchip capillary electrophoresis, microfluidics, electrochemical detection, electroosmotic flow, PDMS, analysis of neurotransmitters.

Abstract

The process of manufacturing of the chip-analyzer, based on polydimethylsiloxane is described.
The possibilities of surface treatment by atmospheric plasma as well as surfactants -sodium dodecyl
sulfate(SDS) and sodiumdeoxycholate, used as additives to the working 10 mM borate buffer are studied.
The change of the electroosmotic flow (EOF) is estimated. On the model mixture of catecholamines
changes in the efficiency and resolution of peaks after modification of the surface channels were assessed

Downloads

Download data is not yet available.

References

1. Lacher, N. A.,Garrison, K. E.,Martin, R. S., Lunte, S. M. Microchip capillary
electrophoresis/electrochemistry // Electrophoresis 2001, 22, 2526–2536.
2. Wang J., Pumera M., Chatrathi M. P., Escarpa A., Konrad R., Griebel A., Dorner W.,
Lowe H. Towards disposable lab-on-a-chip: Poly(methylmethacrylate) microchip
electrophoresis device with electrochemical detection // Electrophoresis 2002, 23, 596–
601.
3. Wu M.H. Simple poly(dimethylsiloxane) surface modification to control cell adhesion
// Surf. Interface Anal. 2009, 41, 11–16.
4.Wang B., Abdulali-Kanji Z., Dodwell E., Horton J.H., Oleschuk R.D. Surface
characterization using chemical force microscopy and the flow performance of modified
polydimethylsiloxane for microfluidic device applications // Electrophoresis 2003, 24,
1442–1450.
5. Leclerc E., Sakai Y., Fujii T. Microfluidic PDMS (Polydimethylsiloxane) bioreactor
for large-scale culture of hepatocytes // Biotechnol. Prog.2004, 20, 750–755.
6. Mehta G., Kiel M.J., Lee J.W., Kotov N., Linderman J.J., Takayama S.Polyelectrolyteclay-
protein layer films on microfluidic PDMS bioreactor surfaces for primary murine
bone marrow culture // Adv. Funct. Mater. 2007, 17, 2701–2709.
7. Zhang Q., Xu J. J., Chen H. Y. Patterning microbeads inside poly(dimethylsiloxane)
microfluidic channels and its application for immobilized microfluidic enzyme reactors //
Electrophoresis 2006, 27, 4943–4951.
8. Hashimoto M., Barany F., Soper S.A. Polymerase chain reaction/ligase detection
reaction/hybridization assays using flow-through microfluidic devices for the detection of
low-abundant DNA point mutations // Biosens. Bioelectron. 2006, 21, 1915–1923.
9. Liu Y.J., Rauch C.B. DNA probe attachment on plastic surfaces and microfluidic
hybridization array channel devices with sample oscillation // Anal. Biochem. 2003, 317 ,
76–84.
10. Liu C., Li J.-M., Liu J.-S., Wang L.-D., Hao Z.-X., Chen H.-W. Fracture mechanism
of metal electrode integrated on a chip and fabrication of a poly(ethylene terephthalate). //
Talanta 2009, 79 (5) , pp. 1341-1347
11.Liu A.-L., He F.-Y., Hu Y.-L., Xia X.-H. Plastified poly(ethylene terephthalate)
(PET)-toner microfluidic chip by direct-printing integrated with electrochemical detection
for pharmaceutical analysis.// Talanta 2006, 68 (4) , pp. 1303-1308.
12. Nielsen T., Nilsson D., Bundgaard F., Shi P., Szabo P., Geschke O., Kristensen A..
Nanoimprint lithography in the cyclic olefin copolymer, Topas, a highly UV-transparent
and chemically resistant thermoplast // J. Vac. Sci. Technol. 2004. B. 22. P. 1770-1775.
13. Lacher N.A., Garrison K.E., Martin R.S., Lunte S.M. Microchip capillary
electrophoresis / electrochemistry // Electrophoresis. 2001. V. 22. P. 2526–2536.
14. Vandaveer W.R., Pasas S.A., Martin R.S., Lunte S.M. Recent developments in
amperometric detection for microchip capillary electrophoresis // Electrophoresis. 2002. V.
23. P. 3667–3677.
15. Martin R.S., Gawron A.J., Lunte S.M., Henry C.S. Dual electrode detection on
poly(dimethylsiloxane)-fabricated microchips // Anal. Chem. 2000. V. 72. P. 3196–3202.
16. Lacher N.A., Lunte S.M., Martin R.S. Development of a Microfabricated Palladium
Decoupler/Electrochemical Detector for Microchip Capillary Electrophoresis Using a
Hybrid Glass/Poly(dimethylsiloxane) Device. // Anal. Chem. 2004. V. 76. P. 2482–2491
17. Bruin G.J.M.. Recent developments in electrokinetically driven analysis on
microfabricated devices // Electrophoresis. 2000. V. 21. P. 3931–3951.
18. Cannon D.M., Kuo T.C., Bohn P.W., Sweedler J.V. Nanocapillary array
interconnects for gated analyte injections and electrophoretic separations in multilayer
microfluidic architectures // Anal. Chem. 2003, 75, 2224–2230.
19. Bodas D., Khan-Malek C. Hydrophilization and hydrophobic recovery of PDMS by
oxygen plasma and chemical treatment-An SEM investigation // Sens. Actuator B Chem.
2007, 123 , 368–373.
20. Ren X., Bachman M., Sims, C., Li, G. P., Allbritton, N., J. Electroosmotic properties
of microfluidic channels composed of poly(dimethylsiloxane) // Chromatogr. B 2001, 762 , 117–125.
21. Badal M.Y., Wong M., Chiem N., Salimi-Moosavi, H., Har-rison, D. J., Protein
separation and surfactant control of electroosmotic flow in poly(dimethylsiloxane)-coated
capillaries and microchips // J. Chromatogr. A 2002, 947 , 277–286.
Published
2019-11-20
How to Cite
Nikolaev, A. V., & Kartsova, L. A. (2019). Surface modification of channel microchip with electrochemical detection for the determination of biologically active substances. Sorbtsionnye I Khromatograficheskie Protsessy, 13(1). Retrieved from https://journals.vsu.ru/sorpchrom/article/view/1598