SALDI Mass - spectrometry for research clusters as a part of poorly conducting deposits

  • Irina S. Goncharova postgraduate student, Institute of Physical Chemistry and Electrochemistry A.N. Frumkin, Russian Academy of Science, Moscow, e-mail: gis8801@yandex.ru
  • Aleksey K. Buryak Doctor of Chemical Sciences, professor, head of the Laboratory of Physical-chemical principles of chromatography and gas chromatography-mass spectrometry, Institute of Physical Chemistry and Electrochemistry A.N. Frumkin, Russian Academy of Science, Moscow
  • Ivan S. Pickii Candidate of Chemical Sciences, senior scientist, Institute of Physical Chemistry and Electrochemistry A.N. Frumkin, Russian Academy of Science, Moscow
  • Nikolay G. Ivanov Deputy department chief JSC «NPO Energomash named after academician V. Glushko», Khimky, Moscow region
  • Vladimir V. Fedorov Chief specialist of LPRE units department JSC «NPO Energomash named after academician V. Glushko», Khimky, Moscow region
Keywords: clusters, MALDI/SALDI mass-spectrometry, poorly conducting deposits, surface chemistry.

Abstract

The method of Surface Assisted Laser Desorption/Ionization mass spectrometry is used to study
chemistry of poorly conducting deposits forming channels’ walls of the combustion chamber cooling path of
the liquid fuel rocket motor. Such deposits interfere with the operations temperature conditions of the
product, making difficult heat exchange. This method simplifies sample preparation and allows to obtain
deposits qualitative composition and the nature of metal clusters formed under "soft ionization" dates.

Downloads

Download data is not yet available.

References

1. Кипнис А.Я. Кластеры в химии. М.: Знание. 1981. 64 с.
2. Mark T.D. Cluster ions: Production, detection and stability. // Int. J. Mass Spectrom.
Ion Proc., 1987, vol. 79, № 1, p. 1-59.
3. Kosevich M.V., Chagovets V.V., Severinovskaya O.V. Mass-spectrometric study of
the formation of silver nanoclusters in polyethers: I. Laser desorption/ionization. // J. of
Anal. Chem. 2012. Vol. 67. No. 13. p. 987–993.
4. Sergeev B.M., Kiryukhin M.V., Prusov A.N. et al. Preparation of Silver
Nanoparticles in Aqueous Solutions of Polyacrylic Acid. // Vestn. Mosk. Univ. Ser. 2:
Khim. 1999. Vol. 40. № 2. p. 129-133.
5. Sergeev B.M., Kiryukhin M.V., Bakhov F.N. et al. Photochemical Synthesis of Silver
Nanoparticles in Aqueous Solutions of Polycarboxylic Acids: Effect of Polymer Matrix on
the Size and Shape of Particles. // Vestn. Mosk. Univ. Ser. 2: Khim. 2001. Vol. 42. №. 5.
p. 308-314.
6. Xiong Yu., Washio I., Chen J. et al. Trimeric clusters of silver in aqueous AgNO3
solutions and their role as nuclei in forming triangular nanoplates of silver // Angew.
Chem. Int. Ed. Engl. 2007. Vol. 46. № 26. p. 4917-4921.
7. Luo C., Zhang Y., Zeng X et al. The role of poly(ethylene glycol) in the formation of
silver nanoparticles // Colloid Interface Sci., 2005, vol. 288. №. 2. p. 444-448.
8. Popa M., Pradel T., Crespo D. and Calderyn-Moreno J.M. Stable silver colloidal
dispersions using short chain polyethylene glycol. // Colloids Surf. A. 2007. Vol. 303.№. 3.
p. 184.
9. Boryak O.A., Kosevich M.V., Shelkovsky V.S. et al. Production of doubly charged
clusters (H2O)n Ba2+ and (H2O)n Ca2+ under low temperature fast atom bombardment
conditions // Int. J. of Mass Spec. 2000. № 194. р. 49-52.
10. Kosevich M.V., Czira G., Boryak O.A. et al. Comparison of Positive and Negative
Ion Clusters of Methanol and Ethanol Observed by Low Temperature Secondary Ion Mass
Spectrometry // Rapid Com. In Mass Spec. 1997. Vol. 11. р. 1411-1416 .
11. Boryak O.A., Kosevich M.V., Chagovets V.V. et al.. Mass- Spectrometric Study of
the Formation of Silver Nanoclusters in Polyether Media: 2. Fast Atom Bombardment and
Modeling. // J. of Anal. Chem. 2012. Vol. 67. No. 13. p. 994–1000.
12. Hagena O.F. Formation of silver clusters in nozzle expansions. // Z. Phys. D.
Atoms, Molecules and Clusters. 1991. Vol. 20. Nos. 1–4, p. 425-428.
13. Sharpe P. and Cassady C.J. Gas-phase reactions of silver cluster ions produced by
fast atom bombardment. // Chem. Phys. Lett. 1992. Vol. 191. Nos. 1-2, p. 111-116.
14. Wucher A., Wahl M. and Oechsner H. Sputtered neutral silver clusters up to Ag18
// Nucl. Instrum. Methods Phys. Res. B: Beam Interact. Mater. Atoms. 1993. Vol. 82. P.
337-346.
15. The Nist Chemistry WebBook: A Chemical Data Resource on the Internet,
Linstrom P.J. and Mallard W.G., Eds., http://webbook.nist.gov. Accessed April 26, 2011.
16. Заикин В.Г. Масс-спектрометрия синтетических полимеров. Москва. ВМСО.
2009. 332 c.
17. Dashtiev M., Frankevich V., Zenobi R. Kinetic energy of free electrons affects
MALDI positive ion yield via capture cross-section // J. Phys. Chem. A 2006. Vol. 110.
P.926- 930.
18. Пыцкий И.С., Буряк А.К. Масс-спектрометрическое исследование химии
поверхности сплавов АД-0 и АМГ-6 методом лазерной десорбции/ионизации //
Физикохимия поверхности и защита материалов. 2011. Т. 47. №.1. С. 1 – 6.
19. Rashidzadeh H. and Guo B. Generation of large gas-phase silver cluster ions by
laser desorption/ionization of silver-containing salts // Chem. Phys. Lett. 1999. Vol. 310,
nos. 5–6, p. 466-470.
20. Kéki S., Szilágyi L.Sz., Török J. High Aggregation Number Silver Clusters by
Matrix-Assisted Laser Desorption/Ionization: Role of Matrixes on the Gas-Phase
Reduction of Silver Ions // J. Phys. Chem. B. 2003. Vol. 107, № 20, p. 4818-4825.
21. Macha S.F., Limbach P.A., Hanton S.D. & etc. Silver cluster interferences in
matrix-assisted laser desorption/ionization (MALDI) mass spectrometry of nonpolar
polymers // J. Am. Soc. Mass Spectrom. 2001. Vol. 12. № 6. p. 732-743.
Published
2019-11-21
How to Cite
Goncharova, I. S., Buryak, A. K., Pickii, I. S., Ivanov, N. G., & Fedorov, V. V. (2019). SALDI Mass - spectrometry for research clusters as a part of poorly conducting deposits. Sorbtsionnye I Khromatograficheskie Protsessy, 13(5). Retrieved from https://journals.vsu.ru/sorpchrom/article/view/1674