Synthesis and chromatographic properties of monolithic columns based on copolymers of divinylbenzene and ethylvinylbenzene with hydroxyalkyl methacrylates
Abstract
Monolithic stationary phases based on copolymers of divinylbenzene (DVB) and
ethylvinylbenzene (EVB) with various hydroxyalkyl methacrylates were synthesized via thermally
initiated free-radical polymerization inside glass tubes with dimensions of 150 × 3 mm. The use of
hydroxybutyl methacrylate instead of hydroxyethyl methacrylate (HEMA) was found to increase the
column permeability by a factor of 1,6 with 5–10% drop in efficiency. The effect of column temperature
on separation using poly(DVB-co-EVB-co-HEMA) monolith was studied. Raising the temperature from
25°C to 80°C increased the efficiency of the column and maximum flow rate of the mobile phase and
reduced the influence of retention factor on peak broadening. At 80°C and velocities up to 3,7 mm/s the
efficiency for alkylbenzenes was 19000–20000 plates/m
Downloads
References
Chromatogr. A. 2007. V. 1168. № 1–2. P. 101–168.
2.Svec F. Porous polymer monoliths: amazingly wide variety of techniques enabling
their preparation // J. Chromatogr. A. 2010. V. 1217. № 6. P. 902–924.
3.Vlakh E.G., Tennikova T.B. Applications of polymethacrylate-based monoliths in
high-performance liquid chromatography // J. Chromatogr. A. 2009. V. 1216. № 13. P.
2637–2650.
4.Urban J., Svec F., Fréchet J.M.J. Hypercrosslinking: new approach to porous polymer
monolithic capillary columns with large surface area for the highly efficient separation of
small molecules // J. Chromatogr. A. 2010. V. 1217. № 52. P. 8212–8221.
5.Nischang I., Teasdale I., Brüggemann O. Towards porous polymer monoliths for the
efficient, retention-independent performance in the isocratic separation of small molecules
by means of nano-liquid chromatography // J. Chromatogr. A. 2010. V. 1217. № 48. P.
7514–7522.
6.Greiderer A., Trojer L., Huck C.W., Bonn G.K. Influence of the polymerisation time on
the porous and chromatographic properties of monolithic poly(1,2-bis(pvinylphenyl))
ethane capillary columns // J. Chromatogr. A. 2009. V. 1216. № 45. P. 7747–
7754.
7.Викторова Е.Н., Канатьева А.Ю., Королев А.А., Курганов А.А. Монолитные
капиллярные колонки на основе дивинилбензола в капиллярной жидкостной
хроматографии // Журн. физич. химии. 2007. Т. 81. № 3. С. 507–511.
8.Матусова С.М., Иванова К.И., Дьячков И.А., Смоленков А.Д., Пирогов А.В.,
Шпигун О.А. Полиалкилметакрилатные монолитные колонки для ВЭЖХ // Изв. АН.
Сер. химич. 2008. № 12. C. 2503–2509.
9.Trojer L., Lubbad S.H., Bisjak C.P., Wieder W., Bonn G.K. Comparison between
monolithic conventional size, microbore and capillary poly(p-methylstyrene-co-1,2-bis(pvinylphenyl)
ethane) high-performance liquid chromatography columns. Synthesis,
application, long-term stability and reproducibility // J. Chromatogr. A. 2007. V. 1146. №
2. P. 216–224.
10. Mayr B., Hölzl G., Eder K., Buchmeiser M.R., Huber C.G. Hydrophobic, pellicular,
monolithic capillary columns based on cross-linked polynorbornene for biopolymer
separations // Anal. Chem. 2002. V. 74. № 23. P. 6080–6087.
11. Smirnov K.N., Dyatchkov I.A., Telnov M.V., Pirogov A.V., Shpigun O.A. Effect of
monomer mixture composition on structure and chromatographic properties of
poly(divinylbenzene-co-ethylvinylbenzene-co-2-hydroxyethyl methacrylate) monolithic
rod columns for separation of small molecules // J. Chromatogr. A. 2011. V. 1218. № 30.
P. 5010–5019.
12. Huo Y., Schoenmakers P.J., Kok W.T. Efficiency of methacrylate monolithic
columns in reversed-phase liquid chromatographic separations // J. Chromatogr. A. 2007.
V. 1175. № 1. P. 81–88.