Hydrotermal stability and volumetric properties of mesoporous organic-inorganic composite materials based on MCM-41 according to the low-temperature adsorption / desorption of nitrogen and X-ray analysis
Abstract
The processes of silylation of MCM-41 using trimethylchlorosilane, dimetoxydimetylsilane,
trimetoxyoktylsilane, and dichlorometylphenylsilane are studied. Based on the data of the low-temperature nitrogen
adsorption/desorption the surface properties, the porosity of high ordered mesoporous materials is considered. It is
noted that the degree of grafting and, consequently, the pore size, as well as other bulk material properties vary with
conditioning of temperature and modifying agent concentration. X-ray diffraction data indicates significant structural
changes of MCM-41 after hydrothermal treatment. The partial destruction of the hexagonal structure of mesoporous
materials takes place. Hydrothermal treatment of mesoporous composites based on MCM-41 does not change the
structure of the silica matrix. Silylation of mesoporous silica results in higher stability of matrix of MCM-41
analogues
Downloads
References
Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates. // J. Am. Chem.
Soc. – 1992. – Vol. 114. – P. 10834.
2 Gomes D., Buder I., Nunes S. P. Sulfonated Silica-Based Electrolyte Nanocomposite
Membranes // Journal of Polymer Science: Part B: Polymer Physics, 2006. – Vol. 44. – P.
2278-2298.
3 Ohyama K., Shirasawa Y., Wada M., Kishikawa N., Ohba Y., Nakashima K., Kuroda
N. Investigation of the novel mixed-mode stationary phase for capillary
electrochromatography. II. Separation of amino acids and peptides on sulfonated
naphthalimido-modified silyl silica gel // Electrophoresis. – 2004, Vol. 25. – P. 3224-3230.
4 Wei Y., Wang W., Jin D., Yang D., Tartakovskaya L. Synthesis of Sulfonated
Polystyrene–Silica Hybrids and Their Application As Ion Exchange Materials // John
Wiley & Sons. – 1997. – P. 1893-1902.
5 Vansant E. F.; Van Der Voort P., Vrancken K. C. In Studies in Surface and Catalysis.
– 1995. - Vol. 93; Delmon, B.; Yates, J. T., Eds.; Elsevier: Amsterdam, Ch. 8 and 9.
6 Borodina E.V., Roessner F., Karpov S.I., Selemenev V.F. Synthesis and
characterization of inorganic-organic composite materials with anion-exchange groups
based on mesoporous silicates // Nanotechnologies in Russia. – 2010. – Vol.5. P. 808-816.
7 Vinu A., Hossani K.Z., Satishkumar G., Sivamurugan V. and Ariga K., Adsorption of
amino acid on mesoporous molecular sieves // Studies in Surface Science and Catalysis. –
2005. – V. 156. – P. 631-636.
8 Miyahara M., Vinu A., Hossain K.Z., Nakanishi T., Ariga K. Adsorption study of
heme proteins on SBA-15 mesoporous silica with pore-filling models // Thin Solid Films.
– 2006. – V. 499, № 1-2. – P. 13-18.
9 Llewellyn P. L., Schueth F., Grillet Y., Rouquerol F., Rouquerol J., Unger K. K.
Water sorption on Mesoporous Aluminosilicate MCM-41 // Langmuir. – 1995. – Vol. 11. –
P. 574.
10 R. Gläser, R. Roesky, T. Boger, G. Eigenberger, S. Ernst, J. Weitkamp Probing the
Hydrophobic properties of the MCM-41-type materials by the hydrophobicity index //
Progress in Zeolite and Microporous Materials. Studies in Surface Science and Catalyst. –
1997. – Vol. 105. – P. 695.
11 Yang H., Zhang G., Hong X., Zhu Y. Silylation of mesoporous silica MCM-41 with
the mixture of Cl(CH2)3SiCl3 and CH3SiCl3: combination of adjustable grafting density
and improved hydrothermal stability // Microporous and Mesoporous Materials. – 2004. –
Vol. 68. P. 119–125.
12 Branton P.J., Hall P.G., Sing K.S.W.. To probe the unique adsorption characteristics
of M41S materials, adsorbates // Adsorption. – 1994. – Vol. 1. – P.77.
13 Beck J. S., Vartuli J. C., Kennedy G. J., Kresge C. T., Roth W. J., and Schramm S. E.
Molecular or Supramolecular Templating: Defining the Role of Surfactant Chemistry in
the Formation of Microporous and Mesoporous Molecular Sieves // Chem. Muter. – 1994.
– Vol. 6. – P. 1816.
14 Zhao X. S., Lu G. Q., Whittaker A. K., Millar G. J., Zhu H. Y. Comprehensive Study
of Surface Chemistry of MCM-41 Using 29Si CP/MAS NMR, FTIR, Pyridine-TPD, and
TGA // J. Phys. Chem. B 1997, 101, 6525-6531.
15 Zhao X. S., Lu G. Q. Modification of MCM-41 by Surface Silylation with
Trimethylchlorosilane and Adsorption Study // J. Phys. Chem. B 1998, 102, P. 1556-1561
16 Thommes M., Koehn R., Froeba M. Sorption and pore condensation behavior of
nitrogen, argon, and krypton in mesoporous MCM-48 silica materials // Phys. Chem. –
2000. – Vol. 104. – P. 7932.
17 Barrett E.P. Joyner L.G., Halenda P.P. The Determination of Pore Volume and Area
Distribution in Porous Substances. I. Computations from Nitrogen Isotherms // J. Amer.
Chem. Soc. – 1951. – Vol. 73. – P. 373.
18 Brunauer S., Emmett P., Teller E. Adsorption of Gases in Multimolecular Layers // J.
Amer. Chem. Soc. – 1938. – Vol. 60. – P. 309.
19 Бородина Е.В. Сорбционно-хроматографическое разделение жирорастворимых
биологически активных веществ: автореф. дисс…канд. хим. наук/ Е.В. Бородина. -
Воронеж, 2012.- 18 с.