Micro- and nanoparticles molecularly imprinted polymers – synthesis, the characteristic and application in the piezoelectric sensors
Abstract
In the review various methodologies of synthesizing micro- and nanospheres of molecularly
imprinted polymers (MIPs) of chemical compounds and biomolecules are considered. The advantages and
disadvantages of suspension and emulsion polymerization and the ways of their further development are
discussed. The attention is focused on the most popular methods of synthesizing MIP nanoparticles such as
micro- and miniemulsion polymerization, the precipitation method, new methods of synthesizing (core-shell
and сore-shell by grafting), making it possible to obtain monodisperse fractions of particles. It is shown that
the MIP synthesis reaction is a labor-intensive process depending on the nature and concentration of the
functional and cross-monomers, the initiator, the temperature and duration of polymerization, the presence or
absence of a magnetic field and even the volume of the polymerization mixture. The results of studying the
features of the synthesis of spherical MIP particles by the methods of the «core-shell» and «core-shell by
grafting» polymerization are presented. The methods may use magnetic nanoparticles of Fe3O4 as the core
when obtaining an imprinted surface; these partricles make it possible to carry out an effective magnetic
division of complex samples. Methods are described of increasing the compatibility of MIP with aqueous
media, including the ones obtained in using the hydrophilic monomers and water as a pore-forming solvent in
the synthesis. Methods of applying MIP nanoparticles in the piezoelectric sensors are discussed. It is shown
that the inclusion of nanoparticles in the structure of the recognizing layer increases the surface area and the
Ермолаева и др. / Сорбционные и хроматографические процессы. 2015. Т. 15. Вып. 3
346
concentration of the available binding sites on the surface of a piezoelectric sensor, leads to the improvement
of kinetic characteristics of heterogeneous affinity reactions and the expansion of the range of the detected
contents
Downloads
References
Anal. Chim. Acta, 2004, Vol. 510, pp. 139-145.
2. Poma A., Turner A.P.F., Piletsky S.A.
Trends Biotechnol, 2010, Vol. 28, pp. 629-637.
3. Poma A., Guerreiro A., Whitcombe M.J.
et al. Adv. Funct. Mater, 2013, Vol. 23,
pp. 2821-2827.
4. Omersel J., Žager U., Kveder T. et al. J.
Immunoassay Immunochem, 2010, Vol. 31,
No 1, pp. 45-59.
5. Alexander C., Andersson H.S., Andersson
L.I. et al. J. Mol. Recogn, 2006, Vol. 19,
pp. 106-180.
Ермолаева и др. / Сорбционные и хроматографические процессы. 2015. Т. 15. Вып. 3
362
6. Guan G., Liu B., Wang Z., Zhang Z.
Sensors, 2008, Vol. 8, pp. 8291-8320.
7. Piletsky S.A., Turner A.P.F. in book:
Piletsky S., Turner A. Molecular imprinting of
polymers. Georgetown, Texas: Landes
Bioscience, 2006, pp. 64-79.
8. Wulff G. Angew. Chem. Int. Ed. Engl,
1995, Vol. 34, pp. 1812-1832.
9. Mosbach K. Trends Biochem. Sci, 1994,
Vol. 19, pp. 9-14.
10. Fang C., Yi C., Wang Y. et al. Biosens.
Bioelectron, 2009, Vol. 24, pp. 3164-3169.
11. Iqbal N., Lieberzeit P. A. in book: Li S.,
Ge Y., Piletsky S.A., Lunec J. Molecularly
Imprinted Sensors: Overview and Applications.
Amsterdam: Elsevier, 2012, pp.195-237.
12. Cheong S.H., McNiven S., Rachkov A. et
al. Macromolecules, 1997, Vol. 30,
pp. 1317-1322.
13. Piletska, E.V. Guerreiro A., Whitcombe
M.J. et al. Macromolecules, 2009, Vol. 42,
pp. 4921-4928.
14. Ye L., Mosbach K. Mater. Res. Soc.
Symp. Proc, 2002, Vol. 723, pp. 51-59.
15. Tokonami S., Shiigi H., Nagaoka T.
Anal. Chim. Acta, 2009, Vol. 641, pp. 7-13.
16. Ge Y., Turner A.P.F. Chem. Eur. J, 2009,
Vol. 15, pp. 8100-8107.
17. Yoshimatsu K. Reimhult K., Krozer A.,
Mosbach K. Sode K., Ye L. Anal. Chim. Acta,
2007, Vol. 584, pp.112-121.
18. Nilsson C., Birnbaum S., Nilsson S. J.
Chromatogr. A, 2007, Vol. 1168, pp. 212-224.
19. Piletsky S.A., Turner A.P.F. in book:
Ligler F.S., Rowe Taitt C.A Optical Biosensors:
Today and Tomorrow. Amsterdam: Elsevier
Science B.V. 2008, pp. 543-581.
20. Reimhult K., Yoshimatsu K., Risveden
K., Chen S., Ye L., Krozer A. Biosens.
Bioelectron, 2008, Vol. 23, pp. 1908 -1914.
21. Celiz M. D., Aga D. S., Colon L. A.
Microchem. J, 2009, Vol. 92, No. 2, pp. 174 -
179.
22. Matsui J., Takayose M., Akamatsu K.et
al. Analyst, 2009, Vol. 134, pp. 80-86.
23. Zhang Y., Liu R., Hu Y., Li G. Anal.
Chem, 2009, Vol. 81, pp. 967-976.
24. Jiang X., Tian W., Zhao C. et al. Talanta,
2007, Vol. 72, pp. 119-125.
25. Shamsipur M., Fasihi J., Khanchi A. et
al. Anal. Chim. Acta, 2007, Vol. 599,
pp. 294-301.
26. Koohpaei A.R, Shahtaheri S.J., Ganjali
M.R. et al. Talanta, 2008, Vol. 75, pp. 978-986.
27. Zhang H.T., Song T., Zong F.L. et al.
J. Mol. Sci, 2008, Vol. 9, pp. 98-106.
28. Sun Z., Schüssler W., Sengl M. et al.
Anal. Chim. Acta, 2008, Vol. 620, pp. 73-81.
29. Malosse L., Palmas P., Buvat P. et al.
Macromolecules, 2008, Vol. 41, pp. 7834-7842.
30. Ansell R.J., Wang D. Analyst, 2009,
Vol. 134, pp. 564-576.
31. Li Y., Yang T., Qi X. et al. Anal. Chim.
Acta, 2008, Vol. 624, pp. 317-325.
32. Luo W., Zhu L., Yu C. et al. Anal. Chim.
Acta, 2008, Vol. 618, pp. 147-156.
33. Molinelli A., O`Mahony J., Nolan K. et
al. Anal. Chem., 2005, Vol. 77, pp. 5196-5204.
34. Herdes C., Sarkisov L. Langmuir, 2009,
Vol. 25, pp. 5352-5359.
35. Ng S.M., Narayanaswamy R. Sens.
Actuators B, 2009, Vol. 139, pp. 156-165.
36. Soares C.M.F., Zanin G.M., Moraes F.F.
et al. J. Inclusion Phenom. Macrocyclic Chem,
2007, Vol. 57, pp. 79-82.
37. Yang Y., Long Y., Cao Q. et al. Anal.
Chim. Acta, 2008, Vol. 606, pp. 92-97.
38. Hoshina K., Horiyama S., Matsunaga H.,
Haginaka J. J. Chromatogr. A, 2009, Vol. 1216,
pp. 4957-4962.
39. Chen L., Xuab S., Lia J. Chem. Soc. Rev.,
2011, Vol. 40, pp. 2922-2942.
40. Perez-Moral N., Mayes А.
Bioseparation, 2002, Vol. 10, pp. 287-299.
41. Shoji R., Takeuchi T., Kubo I. Anal.
Chem, 2003, Vol. 75, No 18, pp. 4882-4886.
42. Panasyuk-Delaney T., Mirsky V.M.,
Wolfbeis O.S. Electroanalysis, 2002, Vol. 14,
pp. 221-224.
43. Flores A., Cunliffe D., Whitcombe M.J.,
Vulfson E.N. Journal of Applied Polymer
Science, 2000, Vol. 77, pp. 1841-1850.
44. Geckeler K.E., Nishide H. Advanced
Nanomaterials. Weinheim: Wiley-VCH, 2010,
906 p.
45. Vaihinger D., Landfester K., Kräuter I. et
al. Macrom. Chem. Phys, 2003, Vol. 203, pp.
1965-1973.
46. Tan C.J., Wangrangsimakul S., Bai R.,
Tong Y.W. Chem. Mater, 2008, Vol. 20, pp.
118-127.
47. Curcio P., Zandanel C., Wagner A. et al.
Macromol. Biosci, 2009, Vol. 9, pp. 596-604.
48. Markowitz M.A., Deng G., Gaber B.P.
Langmuir, 2000, Vol. 16, pp. 6148-6155.
49. Markowitz M.A., Deng G., Gaber B.P.
Langmuir, 2000, Vol. 16, pp. 1759-1765.
Ермолаева и др. / Сорбционные и хроматографические процессы. 2015. Т. 15. Вып. 3
363
50. Xiao P., Dudal Y., Corvini P.F.X. et al.
React. Funct. Polym, 2012, Vol. 72,
pp. 287-293.
51. Liu X., Wei Z.H., Huang Y.P. et al. J.
Chromatogr. A, 2012, Vol. 1264, pp. 137-142.
52. Dai J., Pan J., Xu L. et al. J. Hazard.
Mater, 2012, Vol. 205-206, pp. 179-188.
53. Esfandyari-Manesh M., Javanbakht M.,
Dinarvand R., Atyabi F. J. Mater. Sci. Mater.
Med, 2012, Vol. 23, pp. 963-972.
54. Lehmann M., Dettling M., Brunner H.,
Tovar G.E.M. J. Chromatogr. B, 2004,
Vol. 808, pp. 43-50.
55. Alizadeh T., Ganjali M.R., Akhoundian
M. Int. J. Electrochem. Sci, 2012, Vol. 7, pp.
7655-7674.
56. Ma J., Yuan L., Ding M. et al. Biosens.
Bioelectron, 2011, Vol. 26, pp. 2791-2795.
57. Li L., He X.W., Chen L.X., Zhang Y.
Sci. China Ser. B, 2009, Vol. 52, pp. 1402-1411.
58. Lai J.P., Yang M.L., Niessner R., Knopp,
D. Anal. Bioanal. Chem, 2007, Vol. 389,
pp. 405-412.
59. Wei S., Molinelli A., Mizaikoff B.
Biosens. Bioelectron, 2006, Vol. 21, pp. 1943-
1951.
60. Yao Q., Zhou Y. J. Inorg. Organomet
Polym. Mater, 2009, Vol. 19, pp. 466-472.
61. Yoshimatsu K., LeJeune J., Spivak D.A.,
Ye L. Analyst, 2009, Vol. 134, pp. 719-724.
62. Yang K., Berg M. M., Zhao C., Ye L.
Macromolecules, 2009, Vol. 42, pp. 8739-8746.
63. Zamora O., Paniagua E.E., Cacho C. et
al. Anal. Bioanal. Chem, 2009, Vol. 393,
pp. 1745-1753.
64. Yang M., Gu W., Sun L. et al. Talanta,
2010, Vol. 81, pp. 156-161.
65. Beltran A., Marcé R.M., Cormack P.A.G.,
Borrull F. J. Chromatogr. A, 2009, Vol. 1216,
pp. 2248-2253.
66. Cacho C., Turiel E., Martin-Esteban A. et
al. J. Chromatogr. B, 2004, Vol. 802,
pp. 347-353.
67. Tamayo F.G., Casillas J.L., MartinEsteban
A. J. Chromatogr. A, 2005, Vol. 1069,
pp. 173-181.
68. Sambe H., Hoshina K., Moaddel R. et al.
J. Chromatogr. A, 2006, Vol. 1134, pp. 88-94.
69. Jin Y., Jiang M., Shi Y. et al. Anal. Chim.
Acta, 2008, Vol. 612, pp. 105-113.
70. Tan C.J., Tong Y.W. Anal. Chem., 2007,
Vol. 79, pp. 299-306.
71. Hoshina K., Horiyama S., Matsunaga H.,
Haginaka J. J. Chromatogr. A, 2009, Vol. 1216,
pp. 4957-4962.
72. Perez N., Whitcombe M.J., Vulfson E.N.
J. Appl. Polym. Sci., 2000, Vol. 77,
pp. 1851-1859.
73. Barahona F., Turiel E., Cormack P.A.G.,
Martin-Esteban A. Journal of Polymer Science:
Part A: Polymer Chemistry, 2010, Vol. 48,
pp. 1058-1066.
74. Barahona F., Turiel E., Cormack P.A.G.,
Martin-Esteban A. J. Sep. Sci., 2011, Vol. 34,
pp. 217-224.
75. Gao D, Zhang Z., Wu M. et al. J. Am.
Chem. Soc., 2007, Vol. 129, pp. 7859-7866.
76. Yang H., Zhang S., Tan F. et al. J. Am.
Chem. Soc., 2005, Vol. 127, pp. 1378-1379.
77. Qin L., He X., Zhang W. et al. J.
Chromatogr. A, 2009, Vol. 1216, pp. 807-814.
78. Wang H., Zhou W., Yin X. et al. J. Am.
Chem. Soc., 2006, Vol. 128, pp. 15954-15955.
79. Li Y., Li X., Li Y. et al. Biomaterials,
2009, Vol. 30, pp. 3205-3211.
80. He C., Long Y., Pan J. et al. Talanta,
2008, Vol. 74, pp. 1126-1131.
81. Wang X., Wang L., He X. et al. Talanta,
2009, Vol. 78, pp. 327-332.
82. Wang H., He Y., He X. et al. J. Sep. Sci.,
2009, Vol. 32, pp. 1981-1986.
83. Wang H., He Y., Ji T. et al. Anal. Chem.,
2009, Vol. 81, pp. 1615-1621.
84. Hu Y., Liu R., Zhang Y., Li G. Talanta,
2009, Vol. 79, pp. 576-582.
85. Matsui J., Takayose M., Akamatsu K. et
al. Analyst, 2009, Vol. 134, pp. 80-86.
86. Yan H., Cheng X., Sun N. Journal of
Agricultural and Food Chemistry, 2013,
Vol. 61, pp. 2896-2901.
87. Changa L., Chena S., Li X. Applied
Surface Science, 2012, Vol. 258, pp. 6660-6664.
88. Dai J., Pan J., Xu L. et al. Journal of
Hazardous Materials, 2012, Vol. 205-206,
pp.179-188.
89. An Z., Shi Q., Tang W. et al. J. Am.
Chem. Soc., 2007, Vol. 129, pp. 14493-14499.
90. Titirici M., Borje S. Chem. Mater., 2006,
Vol. 18, pp. 1773-1779.
91. Wei X., Li X., Husson S.
Biomacromolecules, 2005, Vol. 6,
pp. 1113-1121.
92. Boonpangrak S., Whitcombe M.J.,
Prachayasittikul V. et al. Biosens. Bioelectron.,
2006, Vol. 22, pp. 349-354.
Ермолаева и др. / Сорбционные и хроматографические процессы. 2015. Т. 15. Вып. 3
364
93. Southard G.E., Houten K.A.V., Edward
W.O. Anal. Chim.Acta, 2007, Vol. 581,
pp. 202-207.
94. Sulitzky C., Rückert B., Hall A. J. et al.
Macromolecules, 2002, Vol. 35, pp. 79-91.
95. Pan G., Zu B., Guo X. et al. Polymer,
2009, Vol. 50, pp. 2819-2825.
96. Lu C., Zhou W., Han B. et al. Anal.
Chem., 2007, Vol. 79, pp. 5457-5461.
97. Chen Z., Cui H., Hales K. et al. J. Am.
Chem. Soc., 2005, Vol. 127, pp. 8592-8593.
98. Kyaas G. Z., Bikiaris D. N., Lazaridis N.
Chem. Eng. J, 2009, Vol. 149, pp. 263–272.
99. Sun H, Qiao F.J.Chromatogr.A,2008,
Vol. 1212, pp. 1-9.
100. Yan H., Row K. H. and Yang G.
Talanta, 2008, Vol/ 75, pp.227–232.
101. Benito-Pen’a E., Martins S., et al..
Anal. Bioanal. Chem., 2009, Vol/393, 235–245.
102. Puoci F., Lemma F., Cirillo G. et al.
Eur. Polym. J, 2009, Vol. 45, pp. 1634-1640.
103. Ermolaeva, T.N., Kalmykova, E.N.,
P'ezokvartsevye sensory: Analiticheskie
vozmozhnosti i perspektivy (Piezoelectric
Quartz Crystal Sensors: Analytical Potential and
Prospects), Lipetsk: Lipetsk. Gos. Tekh. Univ.,
2007. 190 p./
104. Ermolaeva T.N., Kalmykova E.N.,
Shashkanova O.Y., Russian Journal of General
Chemistry, 2008, Vol. 78, No 12,
pp. 2430-2444.
105. Bondarevskii A.S., Soboleva I.G.,
Ermolaeva T.N., Sorbtsionnye i
khromatograficheskie protsessy, 2010, Vol. 10,
No 3, pp. 378-384.
106. Karaseva N.A., Soboleva I.G.,
Ermolaeva T.N., Sorbtsionnye i
khromatograficheskie protsessy, 2013, Vol. 13,
No 1, pp. 5-9.
107. Zhibrova Yu.A., Zyablov A.N.,
Shcheglova N.A. et al. Sorbtsionnye i
khromatograficheskie protsessy, 2008, Vol. 8,
No 4, pp. 686-688.
108. Sener G., Ozgur E., Yilmaz E et al.
Biosens. Bioelectron, 2010, Vol. 26,
pp. 815-821.
109. Zeng Z., Hoshino Y., Rodriguez A. et
al. Nano, 2010, Vol. 4, pp. 199-204.
110. Ozgur E., Yılmaz E., Şener G. et al.
Environ. Prog. Sustain. Energy, 2012, Vol. 32,
pp. 1164-1169.
111. Hussain M., Iqbal N., Lieberzeit P.A.
Sens. Actuators B: Chem, 2013, Vol. 176,
pp. 1090-1095.
112. Reimhult K., Yoshimatsu K., Risveden
K. et al. Biosens. Bioelectron, 2008, Vol. 23,
pp. 1908-1914.
113. Hoshino Y., Kodama T., Okahata Y.,
Shea K.J. J. Am. Chem. Soc, 2008, Vol. 130,
pp. 15242-15243.
114. Schirhagl R., Lieberzeit P.A., Blaas D.,
Dickert F.L. Advan. Mater., 2010, Vol. 22, pp.
2078-2081.
115. Liu N., Han J., Liu Z., Qu L., Gao Z.
Anal. Methods, 2013, Vol. 5, pp. 4442-4447.
116. Ermolaeva T.N., Kalmykova E.N.
Russian Chemical Reviews, Vol. 75, No 5,
pp. 397-414.
117. Piletsky S., Turner A. Molecular
imprinting of polymers. Georgetown, Texas:
Landes Bioscience, 2006, 208 p.
118. Moreno-Bondi C.M., NavarroVilloslada
F., Benito-Pena E., Urraca L.J.
Current Analytical Chemistry, 2008, Vol. 4,
No 4, pp. 316-340.
119. Piletsky S.A., Piletskaya E.V., El'skaya
A.V. et al. Analytical Letters, 1997, Vol. 30,
pp. 445-455.
120. Karaseva N.A., Chernyshova V.N.,
Ermolaeva T.N. XXIV vserossiiskay
konferentsiya molodykh uchenykh «Problems
of theoretical and experimental chemistry»,
Ekaterinburg, 2014, pp. 25-26.
121. Ansell R.J. J. Chromatogr. B Anal.
Technol. Biomed Life Sci, 2004, Vol. 804,
pp. 151-165.