Removal of metal ions from aqueous solutions by the CuS particles
Abstract
The sorption properties of copper(II) sulfide were studied. The main aim purpose of the study was to
determine the influence of pH on the efficiency of metals extraction from aqueous solutions and adsorption
capacity of copper(II) sulfide particles for europium, cerium and cobalt. Experiments were carried out under
carefully controlled conditions in the pH range from 3 to 9. Metal concentrations were studied by atomic
emission analysis before and after sorption. It is concluded that the model of Langmuir provides a very good
fit to the experimental data. The adsorption capacity of copper(II) sulfide particles has been calculated. At
pH=6 the adsorption capacity of copper(II) sulfide particles was found to be 18.3 mg/g, 18.2 mg/g and
23.7 mg/g for europium, cerium and cobalt, respectively. Copper(II) sulfide particles may be useful for
metals extraction from aqueous solutions.
Downloads
References
zhurnal, 2005, Vol. 49, No 2, pp. 65-67.
2. Grinevich T.V., Dvoeglazova K.N.,
Solov'yanov A.A. et al., Rossiiskii khimicheskii
zhurnal, 2005, Vol. 49, No 2, pp. 76-79.
3. Myasoedova G.V., Rossiiskii khimicheskii
zhurnal, 2005, Vol. 49, No 2, pp. 72-75.
4. Malofeeva G.I., Petrukhin O.M.,
Spivakov B.Ya., Rossiiskii khimicheskii
zhurnal, 2005, Vol. 49, No 2, pp. 132-136.
5. Myasoedova G.V., Nikashina V.A.,
Rossiiskii khimicheskii zhurnal, 2005, Vol. 49,
No 2, pp. 55-63.
Булгакова и др. / Сорбционные и хроматографические процессы. 2015. Т. 15. Вып. 3
372
6. Syed M., Muhammad I. Z., Sadullah K.,
Journal of Colloid and Interface Science, 2006,
Vol. 301, pp. 370-375.
7. Waseem M., Mustafa S., Naeem A. et al.,
Desalination, 2011, Vol. 277, pp. 221-226.
8. Pimneva L.A., Nesterova E.L.,
Sovremennye naukoemkie tekhnologii, 2008,
No 4, pp. 15-19.
9. Lujaniene G., Meleshevych S.,
Kanibolotskyy V., Lithuanian Journal of
Physics, 2008, Vol. 48, No 1, pp. 107-114.
10. Lujaniene G., Meleshevych S.,
Kanibolotskyy V., Journal of Radioanal and
Nuclear Chemistry, 2009, No 282, pp. 787-791.
11. Mustafa S., Misbahud D., Sammad Y. et
al., Chinese Journal of Chemistry, 2010,
Vol. 28, pp. 1153-1158.
12. Yow L., Pei L., Muralithran G., Olaf T. et
al., Advanced Materials Research, 2012,
Vol. 356-360, pp. 537-546.
13. Ozverdi A., Erdem M., Journal of
Hazardous Materials B, 2006, Vol. 137, No 2,
pp. 626-632.
14. Jencarova J., Luptakova A., Chemical
Engineering transactions, 2012, Vol. 28,
pp. 205-210.
15. Cheraneva L.G., Shvetsova M.A.,
Vol'khin V.V., Vestnik Permskogo
natsional'nogo issledovatel'skogo politekh.
universiteta. Khimicheskaya tekhnologiya i
biotekhnologiya, 2009, Vol. 9, pp. 19-25.
16. Krasnoperova A.P., Belikov K.N.,
Sofronov D.S., Bulgakova A. V.,
Rubailo A. Yu., Metody i ob’ekty
khimicheskogo analiza, 2013, Vol. 8, No 4,
pp. 194-198.
17. Sofronov D. S., Belikov K. N.,
Kamneva N. N. et al., Sorbtsionnye i
khromatograficheskie protsessy, 2014, Vol. 14,
No 1, pp. 159-165.
18. Bugaєvs'kii O. A., Reshetnyak O. O.
Tablitsі konstant rіvnovag, shcho
zastosovuyut'sya u analіtichnіi khіmії, Kharkіv,
KhNU, 2000, 77 p.