Rheological and spectral properties of aqueous solutions of phenylalanine
Abstract
Viscosity and spectral properties of individual aqueous solutions of phenylalanine in a wide range of concentrations is studied. The structures with hydrodynamic radii of 1 - 2 nm and 20 - 50 nm in the diluted solutions of phenylalanine with a concentration of less than 22 ± 2 mmol/L is revealed. A plateau is observed on the concentration dependence of the reduced viscosity in the region concentrations of phenylalanine of more than 22 ± 2 mmol/L, indicating the formation of stable configurations associates. It is established that in this region the formation of agglomerates with hydrodynamic radii of 90 -100 nm and 150 - 200 nm takes place using the method of photon correlation spectroscopy. The further growth of the reduced viscosity corresponds to an increase in the number of particles in the associative structure. The increase in the concentration of amino acid in the solution leads to a decrease in the content of structures with a hydrodynamic radius of 90 - 100 nm. There are larger agglomerates with a hydrodynamic radii of 150 - 200 nm, the maximum content of which corresponds to the extremum of the reduced viscosity. The sharp decrease in the values of the reduced viscosity is indicates the formation of a denser three-dimensional structure in the concentration range of phenylalanine greater than 0.055 mol/L. The compaction of amino acid associative structure leads to an increase in the content of particles with a hydrodynamic radii of 90 - 100 nm. A possible scheme of self-assembled structures in the phenylalanine - phenylalanine system is shown
Downloads
References
2. Lenindzher A. Fundamentals of Biochemistry. M., Mir Publ., 1985, 368 p.
3. Jakubke H.-D., Eshkajt H. Amino acids. Peptides. Proteins. Moscow, Mir Publ., 1985, 82 p.
4. Majster A. Biochemistry of amino acids. Moscow, Chemistry Publ., 1961, 630 p.
5. Uajt A., Hendler F., Smit Je. et al. Fundamentals of Biochemistry. M., Mir Publ., 1981, 535 p.
6. GOST R 53708-2009, Petroleum products. Liquids transparent and opaque. Determination of kinematic viscosity and calculation of dynamic viscosity, Moscow, Standartinform, 2010. 20 p.
7. Pecora B.J. Dynamic light scattering: Applications of photon correlation spectroscopy. New York and London, Plenum Press Publ., 1985. 420 p.
8. URL: http://www.photocor.ru/
9. Vojuckij S.S., Kurs kolloidnoy khimii, M., Chemistry Publ., 1976, 512 p.
10. Kotova D.L., Beilina D.S., Krysanova T.A., Rus. J. of Phys. Chem. A, 2004, Vol. 78, No 8. pp. 1230-1233.
11. Selemenev V.F., Khokhlov V.Yu., Bobreshova O.V. et al., Fiziko-himicheskie osnovy sorbcionnyh i membrannyh metodov vydeleniya i razdeleniya aminokislot, M., Stelait Publ., 2002, 299 p.
12. Khokhlova O.N., J. of Phys. Chem. A, 2010, Vol. 84, No 5, pp. 956-959.
13. Karlashova T.S., Trunaeva E.S., Khokhlova O.N. et al., Sorbtsionnye i khromatograficheskie protsessy, 2014, Vol. 14, No 4, рр. 648-653.
14. Goleva E.A., Vasil’eva V.I., Selemenev V.F. el al., Sorbtsionnye i khromatograficheskie protsessy, 2016, Vol. 16, No 5, рр. 640-652.
15. Trunaeva E.S., Khokhlova O.N., Khokhlov V.Yu., J. of Structural Chemistry, 2015, Vol. 56, No 6, рр. 1058-1062. DOI: 10.1134/S0022476615060050
16. Abrosimov V.K., Agafonov A.V., Chumakova R.V. Biologicheski aktivnye veshchestva v rastvorah: struktura, termodinamika, reakcionnaya sposobnost', M., Nauka Publ., 2001, 397p.
17. Tinoko I., Zaujer K., Vjeng Dzh. et al. Fizicheskaya himiya. Principy i primenenie v biologicheskih naukah. M., Tehnosfera Publ., 2005, 744 p.