Computer Simulation of the kimetic mass transfer and multicomponent concentration waves behavior in bi-functional models for sorbents-nano-composites
Abstract
There is realized the theoretical investigation of the Multi(n=6)-component Mass Transfer (MMT)
kinetic process inside the modern combined sorption “NanoComposites (NC)” materials. The NC examples
are represented in the manuscript by the bi-functional Selective “Metal0-Ion Exchangers” NC matrix where
the inner active centers - “NP nanosites” conditioned as “the ‘(Me0)Nano-Particles agglomerates” which are imbedded into the IEx matrix during the preliminary synthesis of the combined NC matrix. There is considered the MMT NC kinetic process across (inside) the bi-functional NC planar L-matrix via the author’s
computerized numerical modelling by the mathematical solution of the mass balance n(6)-Eqns.
The elaborated computerized simulation approach for the MMT NC kinetic process is based on the
foundations of the irreversible thermodynamics including the phenomenological multi(n)-component (n=6)
mass balance n-Eqns. (in partial differenthials) characterizing by the integral parameter newk(2)-variance where the thermodynamic fundamental integral k-parameter describes “the number of the degree of freedom” (n=k(2)=6) of the MMT combined bi-functional NC system considered. There is considered the wave concept (W+) of the thermodynamic of the irreversible process with the propagating mode of the interacting and multicomponent {Xn(L,T)}-concentration waves for the n-components spreading through the planar NC Lmembrane.
The propagation of the interacting and propagating {Xn(L,T)}–concentration waves is demonstrating
on the basis of the author’s visualization after the computerized treatment of the results of the modeling
with the creation of the Sci Computerised Animations, namely by the creation of the multi-color SCAanimated
video-files
Downloads
References
2. Kalinitchev A.I., NanoTechnol Rev(NTREV). Special issue (N5) “NanoTechnology: from Convergence to Divergence”, DeGruyter Ed.3(5): 2014, pp.467-498 (.http://degruyter.com/new/ntrev2014.3 issuefiles.doi:10.1515/ntrev-2014-0007. Publ. online 8.10, and Printed 14.10. 2014(Ed. Ja S.Lee).
3. Kalinitchev A.I., Prot. Met.&Phys. Chem.Surf. (Springer Ed.), 2013, Vol. 49(6), pp.627-638. doi:10.1134/S2070205113060051.http://www. springerlink. com/ openurl.asp?genre =article& ID.
4. Kalinitchev A.I., Advances in Nanoparticles, AnP. 2(2), 2013, pp.1-13, Sci.Res.Publ.: SCIRP. E-Journ. doi:10.4236/ anp.2013.22028 (Site AnP:http:// www.scirp. org/ journal/anp/). ID: 31894.
5. Kalinichev A.I., Sorbtsionnye i khromatograficheskie protsessy, 2013, Vol. 13, No4, pp.413-428.
6. Kalinitchev A., Sorbtsionnye i khromatograficheskieprotsessy, 2016, Vol. 16, No 6, pp.748-768.
7. Kravchenko T.A., Polyanskiy L.N., Kalinichev A.I., Konev D.V., Nano Kompozity Metall–IonoObmennik. M., “Nauka”, 2009, 390ps. (Monografiya).
8. Helfferich F., Klein G., Multicomponent Chromatography. Theory of Interference, New York, M. Dekker Inc., 1970, 360 p.
9. Kalinitchev A., J. Rus. Chem. Reviews, 1996, Vol. 65, pp. 95-115. (English) doi:10.1070/RC1996v065n02A BEH000201.
10. Whitham G.: Linear and Nonlinear waves, Wiley. NY, 1974, 636 p.
11. Kalinitchev A.I., Hoell W.H., , Ion Exchange Technology for Today and Tomorrow, Cox M., Ed., Soc. Chem.Ind. (SCI) London, 2004, pp.53-58 (Extend. Thes., pp. 349-356). www. soci.org.
12. Kalinitchev A.I., Hoell W.H., Recent Advancesin IEx Theory&Practice, Cox M., Ed.Soc.Chem.Ind. (SCI), London, 2008, pp.85-93, (www.soci.org.).
13 . Kalinitchev A.I., In IEX2012 Cox M.,Ed.,Soc. of Chem. Ind., London, S. Fundam.(El.Book). (Thesis: p. 123-124) . 2012, pp. 1-18.