Preconcentration of some fluoroquinolone antibiotics by magnetic solid-phase extraction using magnetite nanoparticles

  • Olga R. Egunova a graduate student of N.G. Cherny- shevskii Saratov State University, Saratov, E-mail: eguno- va.or@gmail.com
  • Sergei N. Shtykov Dr. Sci. (Chemistry), Professor, Di- vision of Analytical Chemistry and Chemical Ecology, N.G. Chernyshevskii Saratov State University, Saratov, E- mail: shtykovsn@mail.ru
Keywords: magnetite nanoparticles, modification, fluoroquinolones, preconcentration, magnetic solid-phase extraction.

Abstract

Polyethylenimine (PEI)-modified superparamagnetic magnetite nanoparticles (MNP) were prepared by co-precipitation method and applied for magnetic solid-phase extraction (MSPE) of three fluoroquino- lones (enrofloxacin (EF), levofloxacin (LF), pefloxacin (PF)) from water samples. Monodispersed MNP were synthesized at a PEI concentration of 2 wt% and  characterized  by  transmission  electron  microscopy  (10±2 нм). The electrostatic adsorption of PEI was allowed to proceed for 15 min under mechanical agita- tion, then the excess of cationic polyelectrolyte, which did not electrostatically adsorb on the MNP, was re- moved by magnetic separation/wash/re-dispersion three times cycles by permanent magnet. It was found that ζ-the potential of PEI coated nanoparticles is maximal at a pH of 3-4, and at pH 3.2 it is equal to +35 mV. The effect of various experimental factors such as the method (mechanical or ultrasound agitation) and time of establishing the sorption equilibrium, the pH of solution, the quantity of the MNP, the influence of antibi- otic concentration, the contact time and the temperature sample were studied using the batch technique. The concentration of unbound antibiotic in the sorption equilibrium was determined from calibration curve using native fluorescence of EF, LF and Tb(III)-PF chelate fluorescence. With enrofloxacin as an example, it has been established that sorption is characterized by the Langmuir model. The sorption isotherm testifies to the high affinity of PEI-modified MNP to fluoroquinolones. Preconcentration on a sorbent with a mass of 18 mg under the of ultrasound agitation during 15 min with a degree of extraction ³ 90% is possible from solutions of fluoroquinolones with a concentration of up to 1·10-5 M in a volume of 50 ml and the adsorption capacity of antibiotics in this case increases to 180-200 mg g1 of magnetite. The degree of extraction of all three antibiotics from 50 ml at optimal pH 3.2-3.3 using 18 mg of magnetite and fluoroquinolone concentration 2·10-6 M was 97±2%, the preconcentration coefficient changes in the range (2.4-2.8)·103. By increasing the volume of the antibiotic solution to 150-250 ml, the preconcentration coefficient increases to (5.5-5.7)·103.

Downloads

Download data is not yet available.

References

1. Redgrave L.S., Sam B., Sutton S.B., Mark A. et al., Trends Microbiol., 2014, Vol. 22, No 8, pp. 438-445.
http://dx.doi.org/10.1016/j.tim.2014.04.007
2. Andreu V., Blasco C., Picoм Y., Trends Anal. Chem., 2007, Vol. 26, No 6, pp. 534-556. http://dx.doi.org/10.1016/j.trac.2007.01.010
3. Bailac S., Ballesteros O., Jiménez- Lozano E., Barrón D. et al., J. Chromatogr. A, 2004, Vol. 1029, pp.145-151. https://doi.org/10.1016/j.chroma.2003.11.110
4. Czyrski A., Chromatographia, 2017, Vol. 80, No 2, pp. 181-200.https://doi.org/10.1007/s1033
5. Watabe S., Yokohama Y., Nakazawa K., Shinozaki K. et al., J. Chromatogr. B, 2010, Vol. 878, pp. 1555-1561. doi:10.1016/j.jchromb.2010.04.012
6. Dorival-Garcia N., Zafra-Gomez A., Can- tarero S., Navalon A. et al., Microchem. J., 2013, Vol. 106, pp. 323-333. https://doi.org/10.1016/j.microc.2012.09.002
7. Egunova O.R., Konstantinova T.A., Shtykov S.N., Izvestiya of Saratov University. New Series. Series: Chemistry. Biology. Ecolo- gy, 2014, Vol. 14, No 4, pp. 27-34.
8. Tolmacheva V.V., Apyari V.V., Kochuk T.V., Dmitrienko S.G., J. Anal. Chem., 2016, Vol. 71, No 4, pp. 321-338. https://doi.org/10.1134/S1061934816040079
9. Xie L., Jiang R., Zhu F., Liu H., Ouyang G., Anal. Bioanal. Chem, 2014, Vol. 406, pp. 377-399. doi:10.1007/s00216-013-7302-6
10. Safarikova M., Safarik I., J. Magn. Magn. Mater., 1999, Vol. 194, pp. 108-112. https://www.researchgate.net/publication/30878 5475
11. Wang L., Yuan Q., Liang G., Shi L. et al., J. Sep. Sci., 2015, Vol. 38, pp. 996-1001. doi:10.1002/jssc.201401216
12. Castillo-García M.L., Aguilar-Caballos M.P., Gómez-Hens A., J. Chromatogr. A, 2015, Vol. 1425, pp. 73-80. https://doi.org/10.1016/j.chroma.2015.11.048
13. Liu Ch., Liao Y., Huang X., Anal. Me- thods, 2016, Vol. 8, No 23, pp. 4744-4754. doi: 10.1039/C6AY00903D
14. Xu S., Jiang C., Lin Y.X., Jia L., Microchim. Acta, 2012, Vol. 179, No 3-4, pp. 257-264. https://doi.org/10.1007/s00604-012- 0894-2
15. Chen L., Zhang X., Xu Y., Du X. et al., Anal. Chim. Acta, 2010, Vol. 662, pp. 31-38. doi: 10.1016/j.aca.2010.01.001
16. He H.B., Dong C., Li B., Dong J.P. et al., J. Chromatogr. A, 2014, Vol. 1361, pp. 23-33. doi:10.1016/j.chroma.2014.07.089
17. Zheng H-B., Mo J-Z., Zhang Yu., Gao Q. et al., J. Chromatogr. A, 2014, Vol. 1329, pp. 17-23. doi:10.1016/j.chroma.2013.12.083
18. Egunova O.R., Reshetnikova I.S., Shty- kov S.N., Mirgorodskaya A.B. et al., Sorbtsion- nye i khromatograficheskie protsessy, 2016, Vol. 16, No 4, pp. 430-438.
19. Egunova O.R., Reshetnikova I.S., Ger- man S.V., Kazimirova K.O. et al., Izvestiya of Saratov University. New Series. Series: Chemi- stry. Biology. Ecology, 2016, Vol. 16, No 1, pp. 48-52. doi:10.18500/1816-9775-2016-16-1-48- 52
20. Egunova O.R., German S.V., Vrabie Ya.A., Shtykov S.N., Izvestiya of Saratov Uni- versity. New Series. Series: Chemistry. Biology. Ecology, 2015, Vol. 15, No 4, pp. 10-14.
21. Tolmacheva V.V. Magnetic sorbents based on hypercrosslinked polystyrene: synthe- sis, properties and analytical application for preconcentration of tetracyclines and sulfona- mides. PhD dissertation (Chemistry) M., 2016, 143 p. http://www.chem.msu.ru/rus /theses/2016/2016-09-27- tolmacheva/fulltext.pdf
22. Parfitt G.D., Rochester C.H. eds. Adsorp- tion from Solution at the Solid/Liquid Interface. London, Academic Press, 1983, pp. 247-320.
23. Babić S., Horvat A.J.M., Pavlović D.M., Kaštelan-Macan M., Trends Anal. Chem, 2007, Vol. 27, No 11, pp. 1043-1064. doi: 10.1016/j.trac.2007.09.004
24. Shtykov S.N., Rusanova T.Yu., Smirnova T.D., Gorin D.A., J. Anal. Chem., 2004, Vol. 59, No 2, pp. 175-178. doi:
10.1023/B:JANC.0000014747.67934.b5
25. Smirnova T.D., Zhelobitskaya E.A., Da- nilina T.G., Izvestiya of Saratov University. New Series. Series: Chemistry. Biology. Ecology, 2016, Vol. 16, No 4, pp. 372-376. (in Russian) doi.org/10.18500/1816-9775-2016-16-4-372- 376
Published
2018-12-06
How to Cite
Egunova, O. R., & Shtykov, S. N. (2018). Preconcentration of some fluoroquinolone antibiotics by magnetic solid-phase extraction using magnetite nanoparticles. Sorbtsionnye I Khromatograficheskie Protsessy, 18(6), 825-835. https://doi.org/10.17308/sorpchrom.2018.18/610