Application of HPLC-MS analysis in the study of formylation 2-alkyl-5-methyl-[1,2,4]triazolo[1,5-a]pyrimidine-7(4H)-ones
Abstract
Compounds based on [1,2,4]triazolo[1,5-a]pyrimidine have a wide range of biological activity. Despite considerable interest in [1,2,4]triazolo[1,5-a]pyrimidine derivatives, the issues of their synthesis and modification remain relevant. In particular, the formylation of these compounds is insufficiently covered in the literature. The purpose of this study was to study the Wilsmeyer-Haack reaction formylation of 2-alkyl-5-methyl-[1,2,4]triazolo[1,5-a]pyrimidine-7(4H)-ones using high performance liquid chromatography in combination with mass spectrometry (HPLC-MS).
The initial 2-alkyl-5-methyl-[1,2,4]triazolo[1,5-a]pyrimidine-7(4H)-ones were formylated using phosphorus chloride in anhydrous dimethylformamide medium.
A reaction mixture obtained as a result of the formylation of 2,5-dimethyl-[1,2,4]triazolo[1,5-a]pyrimidine-7(4H)-one is considered as a model system. When interpreting the results of the HPLC-MS analysis, it was found that in addition to the target 2,5-dimethyl-[1,2,4]triazolo[1,5-a]pyrimidine-6-carbaldehyde, the reaction mixture contains three products of unknown structure. The obtained mixture was separated using the method of preparative column chromatography. A silica gel fraction of 60-200 microns (Russia) was used as the stationary phase (NF), and a chloroform–methanol mixture (20:1) was used as the mobile phase (PF). Four fractions were obtained by elution of the resulting mixture. The first fraction contained a minor impurity, the second a major impurity, the third a target carbaldehyde, and the fourth a mixture of by–product and carbaldehyde.
The structure of the individually obtained compounds has been proven by 1H and 13C NMR and mass spectrometry. It was found that 2,5-dimethyl-[1,2,4]triazolo[1,5-a]pyrimidine-6-carbaldehyde is formed in the OH form, and the structure of 6-(dimethylamino)-2-methyl-4H-cyclopenta[d][1,2,4]triazolo[1,5-a]pyrimidine-7,8-diol. The analysis of substances corresponding to the minor impurity and by-product was not carried out, which is due to the difficulty of isolation in pure form and a yield value of less than 1%.
Similarly, 7-hydroxy-5-methyl-2-ethyl-[1,2,4]triazolo[1,5-a]pyrimidine-6-carbaldehyde and 6-(dimethylamino)-2-ethyl-4H-cyclopenta[d][1,2,4]triazolo[1,5-a]pyrimidine-7,8-diol were obtained.
Downloads
References
Martin-Montes A., Jimenez-Falcao S., Gomez-Ruiz S., Marin C., Mendez-Arriaga J.M. First-row transition 7-oxo-5-phenyl-1,2,4-triazolo[1,5-a]pyrimidine metal complexes: antiparasitic activity and release studies. Pharmaceuticals, 2023; 16(10): 1380. https://doi.org/10.3390/ph16101380
Al-Wahaibi L.H., Rabea S.M., Mahmoud M.A., Youssif B.G.M., Brase S., Abdel-Aziz S.A. Synthesis and antimicrobial evaluation of new 1,2,4-triazolo[1,5-a]pyrimidine-based derivatives as dual inhibi-tors of bacterial DNA gyrase and DHFR. ACS Omega, 2024; 9(47): 47261-47273. https://doi.org/10.1021/acsomega.4c08365
Massari S., Nannetti G., Desantis J., Muratore G., Sabatini S., Manfroni G., Merco-relli B., Cecchetti V., Palu G., Cruciani G., Loregian A., Goracci L., Tabarrini O. A broad anti-influenza hybrid small molecule that po-tently disrupts the interaction of polymerase acidic protein-basic protein 1 (PA-PB1) subu-nits. J. Med. Chem., 2015; 58(9): 3830-3842. https://doi.org/10.1021/acs.jmedchem.5b00012
Pismataro M.C., Felicetti T., Bertagnin C., Nizi M.G., Bonomini A., Barreca M.L., Cecchetti V., Jochmans D., De Jonghe S., Neyts J., Loregian A., Tabarrini O., Massari S. 1,2,4-Triazolo[1,5-a]pyrimidines: Efficient one-step synthesis and functionalization as influen-za polymerase PA-PB1 interaction disruptors. Eur.J.Med.Chem., 2021; 221: 113494. https://doi.org/10.1016/j.ejmech.2021.113494
Massari S., Bertagnin C., Pismataro M.C., Donnadio A., Nannetti G., Felicetti T., Di Bona S., Nizi M.G., Tensi L., Manfroni G., Loza M.I., Sabatini S., Cecchetti V., Brea J., Goracci L., Loregian A., Tabarrini O. Synthe-sis and characterization of 1,2,4-triazolo[1,5-a]pyrimidine-2-carboxamide-based compounds targeting the PA-PB1 interface of influenza A virus polymerase. Eur.J.Med.Chem., 2021; 209: 112944. https://doi.org/10.1016/j.ejmech.2020.112944
Deev S.L., Yasko M.V., Karpenko I.L., Korovina A.N., Khandazhinskaya A.L., An-dronova V.L., Galegov G.A., Shestakova T.S., Ulomskii E.N., Rusinov V.L., Chupakhin O.N., Kukhanova M.K. 1,2,4-Triazoloazine derivatives as a new type of herpes simplex virus inhibitor. Bioorg. Chem., 2010; 38(6): 265-270. https://doi.org/10.1016/j.bioorg.2010.09.002
Li H., Linton A., Tatlock J., Gonzalez J., Borchardt A., Abreo M., Jewell T., Patel L., Drowns M., Ludlum S., Goble M., Yang M., Blazel J., Rahavendran R., Skor H., Shi S., Lewis C., Fuhrman S. Allosteric inhibitors of hepatitis C polymerase: discovery of potent and orally bioavailable carbon-linked dihydropy-rones. J. Med. Chem., 2007; 50(17): 3969-3972. https://doi.org/10.1021/jm0704447
Huang B., Li C., Chen W., Liu T., Yu M., Fu L., Sun Y., Liu H., De Clercq E., Pannecouque C., Balzarini J., Zhan P., Liu X. Fused heterocycles bearing bridgehead nitrogen as potent HIV-1 NNRTIs. Part 3: optimization of [1,2,4]triazolo[1,5-a]pyrimidine core via structure-based and physicochemical property-driven approaches. Eur.J.Med.Chem., 2015; 92: 754-765. https://doi.org/10.1016/j.ejmech.2015.01.042
Desantis J., Massari S., Corona A., As-tolfi A., Sabatini S., Manfroni G., Palazzotti D., Cecchetti V., Pannecouque C., Tramontano E., Tabarrini O. 1,2,4-Triazolo[1,5-a]pyrimidines as a novel class of inhibitors of the HIV-1 reverse transcriptase-associated ri-bonuclease H activity. Molecules, 2020; 25(5): 1183. https://doi.org/10.3390/molecules25051183
Zhang T.Y., Li C.S., Li P., Bai X.Q., Guo S.Y., Jin Y., Piao S.J. Synthesis and eval-uation of ursolic acid-based 1,2,4-triazolo[1,5-a]pyrimidines derivatives as anti-inflammatory agents. Mol. Divers., 2022; 6(1): 27-38. https://doi.org/10.1007/s11030-020-10154-7
Huo J.L., Wang S., Yuan X.H., Yu B., Zhao W., Liu H.M. Discovery of [1,2,4]triazolo[1,5-a]pyrimidines derivatives as potential anticancer agents. Eur. J. Med. Chem., 2021; 211: 113108. https://doi.org/10.1016/j.ejmech.2020.113108
Yang F., Yu L.Z., Diao P.C., Jian X.E., Zhou M.F., Jiang C.S., You W.W., Ma W.F., Zhao P.L. Novel [1,2,4]triazolo[1,5-a]pyrimidine derivatives as potent antitubulin agents: Design, multicomponent synthesis and antiproliferative activities. Bioorg. Chem., 2019; 92: 103260. https://doi.org/10.1016/j.bioorg.2019.103260
Mohamed H.S., Amin N.H., El-Saadi M.T., Abdel-Rahman H.M. Design, synthesis, biological assessment, and in-Silico studies of 1,2,4-triazolo[1,5-a]pyrimidine derivatives as tubulin polymerization inhibitors. Bioorg. Chem., 2022; 121: 105687. https://doi.org/10.1016/j.bioorg.2022.105687
Huo X.S., Jian X.E., Ou-Yang J., Chen L., Yang F., Lv D.X., You W.W., Rao J.J., Zhao P.L. Discovery of highly potent tubulin polymerization inhibitors: Design, synthesis, and structure-activity relationships of novel 2,7-diaryl-[1,2,4]triazolo[1,5-a]pyrimidines. Eur. J. Med. Chem., 2021; 220: 113449. https://doi.org/10.1016/j.ejmech.2021.113449
Chen L., Ji T.Y., Huo X.S., Zeng Z.Y., Ye W.X., Dai C.C., Zhang Y.Q., You W.W., Zhao P.L. Rational design, synthesis and bio-logical evaluation of novel 2-(substituted ami-no)-[1,2,4]triazolo[1,5-a]pyrimidines as novel tubulin polymerization inhibitors. Eur. J. Med. Chem., 2022; 244: 114864. https://doi.org/10.1016/j.ejmech.2022.114864
Yang F., Yu L.Z., Diao P.C., Jian X.E., Zhou M.F., Jiang C.S., You W.W., Ma W.F., Zhao P.L. Novel [1,2,4]triazolo[1,5-a]pyrimidine derivatives as potent antitubulin agents: Design, multicomponent synthesis and antiproliferative activities. Bioorg. Chem., 2019; 92: 103260. https://doi.org/10.1016/j.bioorg.2019.103260
Chen C.N., Lv L.L., Ji F.Q., Chen Q., Xu H., Niu C.W., Xi Z., Yang G.F. Design and synthesis of N-2,6-difluorophenyl-5-methoxyl-1,2,4-triazolo[1,5-a]-pyrimidine-2-sulfonamide as acetohydroxyacid synthase in-hibitor. Bioorg. Med. Chem., 2009; 17(8): 3011-3017. https://doi.org/10.1016/j.bmc.2009.03.018
Tang W., Shi D.Q. Synthesis and herbi-cidal activity of O,O-dialkyl N-[2-(5,7-dimethyl-[1,2,4]triazolo[1,5-a]pyrimidin-2-yloxy)benzoxyl]-1-amino-1-substitutedbenzyl phosphonates. J. Heterocyclic Chem., 2010; 47(1): 162-166. https://doi.org/10.1002/jhet.292
Ma Y.C., Yu Y.H., Hou G.F., Huang J.H., Gao J.S. Synthesis, crystal structure and herbicidal activity of a series of [1,2,4]triazolo[1,5-a]pyrimidine-2-sulfonamide compounds. Heterocycles, 2016; 92(5): 829-843. https://doi.org/10.3987/com-16-13415
Chen Q., Zhu X.L., Jiang L.L., Liu Z.M., Yang G.F. Synthesis, antifungal activity and CoMFA analysis of novel 1,2,4-triazolo[1,5-a]pyrimidine derivatives. Eur. J. Med. Chem., 2008; 43(3): 595-603. https://doi.org/10.1016/j.ejmech.2007.04.021
Han L.R., Cheng L., Hu D.S., Chen Q.W., Han L., Xu T.M., Liu X.H., Wu N.J. Design, synthesis and biological activities of 1,2,4‐triazolo[1,5‐a]pyrimidine‐7‐amine deriva-tives bearing 1,2,4‐oxadiazole motif. J. Heter-ocyclic Chem., 2023; 60(2): 241-251. https://doi.org/10.1002/jhet.4576
Lippmann E., Strauch P., Tenor E., Thomas E.. Patent DD, no. 264439, 1989.
Lipson V.V., Svetlichnaya N.V., Boro-dina V.V., Shirobokova M.G., Desenko S.M., Musatov V.I., Shishkina S.V., Shishkin O.V., Zubatyuk R.I. Formylation of 4,7-dihydro-1,2,4-triazolo[1,5-a]pyrimidines using Vilsmei-er–Haack conditions. J. Heterocyclic Chem., 2012; 49(5): 1019-1025. https://doi.org/10.1002/jhet.875




