Cluster analysis of the Russian labour market sectors
Abstract
Subject. In the face of significant change, with companies suspending or completely terminating their operations in the Russian Federation, there are supply and logistical challenges, and planning issues arise. It is still necessary to plan financial support for industries that are most likely to be affected by these changes. The changes affect not only the output, but also the employment and wages in the sectors. A comprehensive analysis of the developments is required to make the most effective decisions. In this study, we considered the relationship between sectors of the economy in terms of average wages, which is an important factor reflecting the development vector in the sector.
Objectives. The purpose of the study was to analyse the specific features of the Russian labour market, based on average wages by sector and to identify similar sectors.
Methodology. In the study, we used the classification of economic sectors based on the methodology developed by the Federal State Statistics Service. Throughout the study, the terms “economic sector” and “industry” are used as synonyms. The following scientific methods were used: measurement, description, and modelling. The research is based on reviewing topical scientific literature, both Russian and foreign.
Results. We grouped economic sectors based on characteristics such as chained rate of increase, average rate of increase, minimum and maximum value, standard deviation, and the range of the studied time series. The resulting clusters reflect the specific features of the industries included, which supports the results of the analysis.
Conclusions. The analysis revealed three clusters with industries sharing a common development dynamic. The first cluster includes industries that are part of the primary sector of the economy. The second cluster includes state-supported industries, while the third cluster represents industries that are part of the manufacturing sector.
Metrics
References
Алексеева, Е. С., & Швецова, В. А. (2016). Генетическая карта здоровья населения. Финансирование и инновации в сфере здравоохранения. Символ Науки, 11(4), 2. [Alekseeva, E. S. & Shvetsova, V. A. (2016). Genetic map of population health. Financing and innovation in healthcare. Symbol of science, 11(4), 2. (In Russian.).]
Гарнов, А. П., & Гарнова, В. Ю. (2016). Кластеризация экономики: способы повышения эффективности государственной промышленной . Вестник РЭУ Им. Г. В. Плеханова, 6. [Garnov, A. P. & Garnova, V. Yu. (2016). Cluster economy: ways of raising the efficiency of state industrial policy. Vestnik Rossiyskogo ekonomicheskogo universiteta imeni G. V. Plekhanova, 6. (In Russian.).]
Ершова, В. Ю. (2012). Роль кластеров в развитии экономики. Научные Исследования в Образовани, 7. [Ershova, V. Yu. (2012). The role of clusters in economic development. Nauchnye issledovaniia v obrazovanii, 7. (In Russian.).]
Искандарян, М. В., & Фадеева, Е. А. (2021). Безработица в условиях пандемии. Journal of Economy and Business, 9(1), 4–5. [Iskandaryan, M. V. & Fadeeva, E. A. (2021) Unemployment in the context of the pandemic. Journal of Economy and Business, 9(1), 4-5. (In Russian.).] https://doi.org/10.24412/2411-0450-2021-9-1-101-104
Каукин, А. С., & Миллер, Е. М. (2022). Динамика промышленного производства во втором квартале 2022 г. // Экономическое Развитие России, 9, 4–5. [Kaukin, A. S. & Miller, E. M. (2022). Industrial Production Dynamics in Q2 2022. Russian Economic Development, 9, 4-5. (In Russian.).]
Коокуева, В. В. (2013). Финансирование образования в российской федерации и в зарубежных странах. Финансовая Аналитика: Проблемы и Решения, 4(142), 2. [Kookueva, V. V. (2013). Financing education in the Russian Federation and in foreign countries. Financial Analytics: Science and Experience, 4(142), 2. (In Russian.).]
Курбатова, И. А., & Пермякова, Н. П. (2015). Проблемы реализации функций заработной платы в российской экономике. Journal of New Economy, 5(61), 6–13. [Kurbatova, I. A. & Permyakova, N. P. (2015). Problems of implementation of wage functions in the Russian economy. Journal of new economy, 5(61), 6-13. (In Russian.).]
Маслова, Е. В., Колесникова, О. А., & Околелых, И. В. (2022). Современные трансформации рынка труда России: вызовы и необходимая реакция управления. Экономика Труда, 9(4), 743–764. [Maslova, E. V., Kolesnikova, O. A. & Okolelyh, I. V. (2022). Modern transformations of the Russian labour market: challenges and necessary management response. Journal of Labor Economics, 9(4), 743-764. (In Russian.).] https://doi.org/10.18334/et.9.4.114459
Николаева, Е. В., & Сердюкова, М. Н. (2018). Анализ эффективности государственных программ поддержки малых форм организации сельскохозяйственного производства и сельскохозяйственной кооперации. Вестник Челябинского Государственного Университета, 8(418), 121. [Nikolaeva, Ye.V. & Serdyukova, M. N. (2018). The efficiency analysis of the state support programs for small forms of agricultural production and agricultural cooperation. Bulletin of Chelyabinsk State University, 8(418), 121. (In Russian.).]
Растянникова, Е. В. (2016). Первичный сектор экономики в странах БРИКС. Гуманитарные, Социально-Экономические и Общественные Науки, 4, 194–197. [Rastyannikova, E. V. (2016). The primary sector of the economy in BRICS countries. Institute of oriental studies of the Russian academy of sciences, 4, 194–197. (In Russian.).]
Таппасханова, Е. О., Мустафаева, З. А., & Бисчекова, Ф. Р. (2018). Современное состояние и тенденции развития рынка мебельной продукции России. KANT, 3(28), 259. [Tappaskhanova, E. O., Mustafaeva, Z. A. & Bischekova, F. R. (2018). Current state and development trends of the Russian furniture market. KANT, 3(28), 259. (In Russian.).]
Anderson, K. H., Butler, J. S., & Sloan, F. A. (1987). Labor Market Segmentation: A Cluster Analysis of Job Groupings and Barriers to Entry. Southern Economic Journal, 53(3), 571. https://doi.org/10.2307/1058755
Greenlaw, S. A., & Taylor, T. (2016). OpenStax Economics. Principles of Economics. In OpenStax CNX.
Hagen, T. (2005). Three Approaches to the Evaluation of Active Labour Market Policy in East Germany Using Regional Data. SSRN Electronic Journal, 03(27). https://doi.org/10.2139/ssrn.423402
Huynh, T. L. D., Hoang, K., Ongena, S., Mamonov, M., Mishra, T., Nguyen, H., Pestova, A., Vu, T., & Walther, T. (2022). The Impact of Foreign Sanctions on Firm Performance in Russia. CEPR Discussion Paper, 17415, 17.
Ko, H., & Bae, E. (2020). Effects of active labour-market policies on welfare state finances. Journal of International and Comparative Social Policy, 36(2), 200–216. https://doi.org/10.1017/ics.2020.11
Li, Z., & Lin, B. (2022). Analyzing the impact of environmental regulation on labor demand: A quasi-experiment from Clean Air Action in China. Environmental Impact Assessment Review, 93. https://doi.org/10.1016/j.eiar.2021.106721
Sloane, C. M., Hurst, E. G., & Black, D. A. (2021). College majors, occupations, and the gender wage gap. Journal of Economic Perspectives, 35(4), 223–248. https://doi.org/10.1257/jep.35.4.223
Stiglitz, J. E. (2021). The proper role of government in the market economy: The case of the post-COVID recovery. Journal of Government and Economics, 1, 100004. https://doi.org/10.1016/j.jge.2021.100004
Sun, Y. (2022). The Effect of Changes in Labor Demand and Entrepreneurship on Income Inequality under Innovations. Proceedings of the 2022 2nd International Conference on Enterprise Management and Economic Development (ICEMED 2022), 656(5), 97–103. https://doi.org/10.2991/aebmr.k.220603.201
Voloshin, A. A. (2022). the Problems and Changes on the Labor Market in Russia During the Crises in 2020 and the First Half of 2022. Moscow Economic Journal, 7(7), 160–178. https://doi.org/10.55186/2413046x_2022_7_7_445
Voloshina, I. A., Dzhuma, V. I., & Mukhina, I. I. (2022). Demand for Workforce and Professions in 2021-2022: Job Analysis Results. Social & Labor Researches, 48(3), 118–130. https://doi.org/10.34022/2658-3712-2022-48-3-118-130

This work is licensed under a Creative Commons Attribution 4.0 International License.
Funding data
-
Russian Science Foundation
Grant numbers № 22-78-10150



















