Multi-dimensional risk monitoring in economics (based on the reduction in socio-economic development)

Keywords: risk analysis, model, monitoring, system, random vector

Abstract

Subject. Control and analysis of the country’s socio-economic security is one of the crucial problems. It requires the development and improvement of adequate risk analysis models given the economy’s characteristics. These include the existence of several risk factors that can be interrelated and occur simultaneously, non-stationarity of economic processes, small data samples.
Purposes. To propose and, on the synthetic and real data, test a multi-dimensional risk model, that fulfils the fundamental specifics of economic processes.
Methodology. To achieve these goals, we used such scientific methods as analysis, synthesis, systemic approach in economics, risk theory and mathematical modeling of stochastic systems. The basis of the research is the review of the relevant scientific literature in the fields of systems analysis, risk theory, mathematical modelling, mathematical economics and multivariate statistical methods.
Results. We proposed the model of multi-dimensional risk that is focused on the specifics of economic processes and based on the concept of viewing the studied economic system or phenomenon as multi-dimensional non-stationary processes that are considered as Gaussian random vectors at each moment of time.
Conclusions. Approbation of the proposed approach on the synthetic and real data has proved the possibility of its practical use for risk monitoring in economics.

Metrics

Metrics Loading ...

Author Biographies

Oleg A. Golovanov, Ural Branch of RAS, Institute of Economics

Postgraduate Student

Alexander N. Tyrsin, Ural Federal University

Dr. Sci. (Eng.), Full Prof.

Elnura A. Aibekova, Ural Federal University

Student

References

Винокур, И. Р. (2020). Методика анализа и управления рисками. Количественная оценка рисков. Вестник ПНИПУ. Социально-экономические науки, (1), 204-217. [Vinokur, I. R. (2020). Methodology of risk analysis and management. Quantitative risk assessment. Bulletin of PNIPU. Social and economic sciences, (1), 204-217. (In Russian).] DOI: 10.15593/2224-9354/2020.1.16

Воронов, В. С., & Давыдов, В. Д. (2021). Байесовский подход в финансовой инженерии: конструируем интеллектуальные системы поддержки финансовых решений. Вопросы инновационной экономики, 11(4), 1509-1520. [Voronov, V. S., & Davydov, V. D. (2021). Bayesian approach in financial engineering: constructing intelligent systems to support financial decisions. Issues of Innovative Economics, 11(4), 1509-1520. (In Russian).] DOI: 10.18334/vinec.11.4.113830

Ганичева, А. В., & Ганичев, А. В. (2022). Оценивание числа слагаемых суммы независимых случайных величин при моделировании гауссовских случайных величин. Экономика. Информатика, 49(3), 546-557. [Ganicheva, A. V., & Ganichev, A. V. (2022). Estimation of the number of terms in the sum of independent random variables in modeling Gaussian random variables. Economics. Informatics, 49(3), 546-557. (In Russian).] DOI: 10.52575/2687-0932-2022-49-3-546-557

Голованов, О. А., Тырсин, А. Н., & Васильева, Е. В. (2023). Моделирование рисков экономической безопасности регионов России в условиях санкционного давления. Экономические и социальные перемены: факты, тенденции, прогноз, 16(5), 49-65. [Golovanov, O.A., Tyrsin, A.N., & Vasilyeva, E.V. (2023). Modeling economic security risks for Russian regions in the context of sanctions pressure. Economic and Social Changes: Facts, Trends, Forecast, 16(5), 49-65.] DOI: 10.15838/esc.2023.5.89.310.15838/esc.2023.5.89.3

Голованов, О. А., & Тырсин, А. Н. (2024). Спуск по узловым прямым и симплекс-алгоритм – два варианта регрессионного анализа на основе метода наименьших модулей. Заводская лаборатория. Диагностика материалов, 90(5), 79-87. [Golovanov, O. A., & Tyrsin, A. N. (2024). Descent along nodal straight lines and simplex algorithm: two variants of regression analysis based on least absolute deviation method. Industrial Laboratory. Diagnostics of Materials, 90(5), 79-87. (In Russian).] DOI: 10.26896/1028-6861-2024-90-5-79-87

Дубров, А. М., Лагоша, Б. А., & Хрусталев, Е. Ю. (2000). Моделирование рисковых ситуации в экономике и бизнесе. М.: Финансы и статистика. [Dubrov, A. M., Lagosha, B. A., & Khrustalev, E. Yu. (2000). Modeling of risk situations in economics and business. Moscow: Finance and Statistics. (In Russian).].

Качалов, Р. М., & Опарин, С. Г. (2019). IV Научно-практическая конференция «Управление рисками в экономике: проблемы и решения». Экономическая наука современной России, (1), 139-145. [Kachalov, R. M., & Oparin, S. G. (2019). IV Scientific and Practical Conference "Risk Management in the Economy: Problems and Solutions". Economic Science of Modern Russia, (1), 139-145. (In Russian).] DOI: 10.33293/1609-1442-2019-1(84)-139-145

Клейнер, Г. Б. (2023). Доказательное моделирование как перспективный инструмент научного исследования социально-экономических процессов. Экономика и управление: проблемы, решения, 2(6), 5-16. [Kleiner, G. B. (2023). Evidence-based modeling as a perspective tool for scientific research of socio-economic processes. Economics and Management: Problems, Solutions, 2(6), 5-16. (In Russian).] DOI: 10.36871/ek.up.p.r.2023.06.02.001

Краковский, Ю. М., Каргаполцев, С. К., & Начигин, В. А. (2018). Моделирование перевозочного процесса железнодорожным транспортом: анализ, прогнозирование, риски. СПб.: «ЛИТЕО». [Krakovsky, Yu. M., Kargapoltsev, S. K., & Nachigin, V. A. (2018). Modeling the transportation process by rail: analysis, forecasting, risks. St. Petersburg: "LITEO". (In Russian).].

Кузьмина, М. В. (2019). Риски организации: угроза или возможность? Вестник Российского экономического университета имени Г. В. Плеханова, (3), 215-221. [Kuzmina, M. V. (2019). Organization Risks: Threat or Opportunity? Bulletin of the Plekhanov Russian University of Economics, (3), 215-221. (In Russian).] DOI: 10.21686/2413-2829-2019-3-215-221.21

Лукашин, Ю.П. (2003). Адаптивные методы краткосрочного прогнозирования временных рядов. М.: Финансы и статистика. [Lukashin, Yu. P. (2003). Adaptive methods of short-term forecasting of time series. Moscow: Finance and Statistics. (In Russian).].

Лобкова, Е. В. (2022). Применение теории нечетких множеств в оценке рисков экономической безопасности в условиях цифровой трансформации региональной экономики. Экономические науки, (3), 111-118. [Lobkova, E. V. (2022). Application of fuzzy set theory in assessing economic security risks in the context of digital transformation of the regional economy. Economic sciences, (3), 111-118. (In Russian).] DOI: 10.14451/1.208.111

Митяков, С. Н. (2019). Методы оценки рисков экономической безопасности. Экономическая безопасность, 2(1), 23-27. [Mityakov, S. N. (2019). Methods for assessing economic security risks. Economic Security, 2(1), 23-27. (In Russian).] DOI: 10.18334/ecsec.2.1.100618

Орлов, А. И., & Пугач, О. В. (2012). Подходы к общей теории риска. Управление большими системами, 40, 49-82. [Orlov, A. I., & Pugach, O. V. (2012). Approaches to the general theory of risk. Large Systems Management, 40, 49-82. (In Russian).].

Орлова, Е. В. (2018). Имитационное моделирование и управление рисками автотранспортного предприятия. Проблемы анализа риска, 15(5), 46-55. [Orlova, E. V. (2018). Simulation modeling and risk management of a motor transport enterprise. Problems of risk analysis, 15(5), 46-55. (In Russian).] DOI: 10.32686/1812-5220-2018-15-5-46-55

Савинская, Д. Н., Шуняев, А. А., Зейн, В., & Шуняев, А. А. (2021). Cовременные методы прогнозирования временных рядов. Современная экономика: проблемы и решения, (11), 56-63. [Savinskaya, D. N., Shunyaev, A. A., Zein, V., & Shunyaev, A. A. (2021). Modern methods of time series forecasting. Modern Economics: Problems and Solutions, (11), 56-63. (In Russian).] DOI: 10.17308/meps.2021.11/2713

Тырсин, А. Н. (2015). О моделировании риска в системах критичных инфраструктур. В книге: Экономические и технические аспекты безопасности строительных критичных инфраструктур. Материалы международной конференции, 205-208. [Tyrsin, A. N. (2015). On risk modeling in critical infrastructure systems. In: Economic and Technical Aspects of Safety of Civil Engineering Critical Infrastructures. Proceedings of the international conference, 205-208. (In Russian).].

Тырсин, А. Н., & Сурина, А. А. (2017). Моделирование риска в многомерных стохастических системах. Вестник Томского государственного университета. Управление, вычислительная техника и информатика, (2), 65-72. [Tyrsin, A. N., & Surina, A. A. (2017). Risk Modeling in Multivariate Stochastic Systems. Bulletin of Tomsk State University. Management, Computer Science and Information Science, (2), 65-72. (In Russian).] DOI: 10.17223/19988605/39/9

Alleman, G. B., & Quigley, J. M. (2024). Risk Management. Auerbach Publications. DOI: 10.1201/9781003425465

Aven, T. (2016). Risk assessment and risk management: Review of recent advances on their foundation. European Journal of Operational Research, 253(1), 1-13. DOI: 10.1016/j.ejor.2015.12.023

Aven, T. (2019). The Science of Risk Analysis: Foundation and Practice. Routledge. DOI: 10.4324/9780429029189

Behrensdorf, J., Broggi, M., & Beer, M. (2019). Reliability Analysis of Networks Interconnected with Copulas. ASCE-ASME. Journal of Risk and Uncertainty in Engineering Systems, Part B Mechanical Engineering, 5, 041006-9. DOI: 10.1115/1.4044043

Benzaghta, M. A., Elwalda, A., Mousa, M. M., Erkan, I., & Rahman, M. (2021). SWOT analysis applications: An integrative literature review. Journal of Global Business Insights, 6(1), 54-72. DOI: 10.5038/2640-6489.6.1.1148.

Bryant, J., & Zhang, J. L. (2016). Bayesian Forecasting of Demographic Rates for Small Areas: Emigration Rates by Age, Sex, and Region in New Zealand, 2014-2038. Statistica Sinica, 26, 1337-1363. DOI: 10.5705/ss.2014.200t

Cherubini, U., Luciano, E., & Vecchiato, W. (2004). Copula Methods in Finance. Wiley. DOI: 10.1002/9781118673331.

Devianto, M. D., & Fadhilla, D. R. (2015). Time Series Modeling for Risk of Stock Price with Value at Risk Computation. Applied Mathematical Sciences, 9(56), 2779-2787. DOI: 10.12988/ams.2015.52144.

Ginevicius, R., Gedvilaite, D., Stasiukynas, A., & Suhajda, K. (2022). Complex Expert Assessment of the State of Business Enterprises. Acta Polytechnica Hungarica, 19(2), 135-150. DOI: 10.12700/APH.19.2.2022.2.8.

Hardle, W.K., Simar, L., & Fengler, M.R. (2024). Applied Multivariate Statistical Analysis. Springer. DOI: 10.1007/978-3-031-63833-6.

Jamshidi, A., Ait-kadi, D., Ruiz, A., & Rebaiaia, M. L. (2017). Dynamic risk assessment of complex systems using FCM. International Journal of Production Research, 56(3), 1070-1088. DOI: 10.1080/00207543.2017.1370148.

Joe, H. (2014). Dependence Modeling With Copulas. New York: Chapman and Hall/CRC. DOI: 10.1201/b17116.

Khodabakhshian, A., Puolitaival, T., & Kestle, L. (2023). Deterministic and Probabilistic Risk Management Approaches in Construction Projects: A Systematic Literature Review and Comparative Analysis. Buildings, 13(5), 1312. DOI: 10.3390/buildings13051312.

Kondor, D., Hafez, V., Shankar, S., Wazir, R., & Karimi, F. (2024). Complex systems perspective in assessing risks in artificial intelligence. Philosophical Transactions of the Royal Society A, 382, 20240109. DOI: 10.1098/rsta.2024.0109.

Kou, G., Chao, X., Peng, Y., Alsaadi, F. E., & Herrera-Viedma, E. (2019). Machine learning methods for systemic risk analysis in financial sectors. Technological and Economic Development of Economy, 25(5), 716-742. DOI: 10.3846/tede.2019.8740.

Liu, T., & Yu, Z. (2022). The Analysis of Financial Market Risk Based on Machine Learning and Particle Swarm Optimization Algorithm. EURASIP Journal on Wireless Communications and Networking, 31. DOI: 10.1186/s13638-022-02117-3.

Solozhentsev, E. D. (2015). Logic and probabilistic risk models for management of innovations system of country. International Journal of Risk Assessment and Management, 18(3/4), 237-255. DOI: 10.1504/IJRAM.2015.071211.

Ultsch, A., & Lotsch, J. (2015). Computed ABC Analysis for Rational Selection of Most Informative Variables in Multivariate Data. PLoS ONE, 10(6), e0129767. DOI: 10.1371/journal.pone.0129767.

Published
2025-01-27
How to Cite
Golovanov, O. A., Tyrsin, A. N., & Aibekova, E. A. (2025). Multi-dimensional risk monitoring in economics (based on the reduction in socio-economic development). Eurasian Journal of Economics and Management, (1), 3-17. https://doi.org/10.17308/econ.2025.1/12868
Section
Mathematical and Tool Methods of Economy