The conditions for the solid state synthesis of solid solutions in zirconia and hafnia systems with the oxides of rare earth elements
Abstract
The goal of this work was to study the specific features of obtaining (Zr,Hf)1–xRxO2-0.5x solid solutions through solid-phase sintering and to analyse the correctness of the existing variants of phase diagrams for (Zr, Hf)O2-R2O3 zirconia and hafnia systems with the oxides of rare earth elements.
We analysed the existing data on the duration of annealing used to study phase equilibria in zirconia and hafnia systems with the oxides of rare earth elements. The “annealing time logarithm – reciprocal temperature” dependences were constructed. It was shown that the effective diffusion coefficient upon annealing was at least 200 kJ/mol. The time of annealing required for the achievement of equilibrium at 1300 ºС was no less than 6 months. The annealings for one year did not allow receiving reliable information on phase equilibria in these systems with temperatures lower than 1250 ºС. All the data on phase diagrams presented in earlier studies for lower temperatures did not characterise the equilibrium state of systems. Apart from low-temperature phases of variable compositions presented in phase diagrams, among the
characteristics of non-equilibrium states there were violations of the Hume-Rothery rule and observations of diffusionless processes of ordering of solid solutions, including those occurring upon “fluorite-pyrochlore” solid state transitions. Probable schemes of low temperature phase equilibria in the ZrO2-Er2O3 and HfO2-Eu2O3 systems were presented taking into account the third law of thermodynamics.
The obtained results are fundamental and will be useful for the assessment of the stability of thermal barrier coatings and
fuel cells based on zirconium and hafnium oxides with the oxides of rare earth elements.
Downloads
References
Sabbarao E. C. Zirconia – an overview. In: Proc. First Int. Conf.: Science and Technology of Zirconia. Cleveland, Ohio; 1981. pp. 1-24.
Fedorov P. P., Yarotskaya, E. G. (). Zirconium d i o x i d e . R e v i e w. Condensed Matter and Interphases.2021;23(2): 169–187. https://doi.org/10.17308/kcmf.2021.23/3427
Kuz’minov Yu. S, Osiko V. V. Fianites*. Moscow: Nauka Publ.; 2001. 280 p. (In Russ.)
Osiko V. V., Borik M. A., Lomonova E. E. Synthesis of refractory materials by skull melting. In: Dhanaraj G., Byrappa K., Prasad V., Dudley, M. (eds.). In: Springer Handbook of Crystal Growth. N.Y.: Springer; 2010.
p. 433-477. https://doi.org/10.1007/978-3-540-74761-1_14
Zhigachev A. O., Golovin Yu. I., Umrikhin A. V., Korenkov V. V., Tyurin A. I., Rodaev V. V., D’yachek T. A. Ceramic materials based on zirconium dioxide* / Yu. I. Golovin (eds.). Moscow: Tekhnosfera Publ.; 2018. 357 p.
Stevens R. Engineering properties of zirconia. In: Engineered Materials Handbook: Ceramics and Glasses. ASM International. CRC Press; 1991;4: 775-786.
Bocanegra-Bernal M. H., de la Torre S. D. Phase transitions in zirconium dioxide and related materials for high performance engineering ceramics. Journal of Materials Science. 2002;37: 4947–4971. https://doi.org/10.1023/A:1021099308957
Kablov E. N. Strategical areas of developing materials and their processing technologies for the period up to 2030. Aviation Materials and Technologies. 2012;S: 7-17. (In Russ., abstract in Eng.). Available at: https://www.elibrary.ru/item.asp?id=18084815
Kelly J. R., Denry I. Stabilized zirconia as a structural ceramics: An overview. Dental Materials. 2008;24(3): 289-298. https://doi.org/10.1016/j.dental.2007.05.005
Fedorov P. P., Popov P. A. Principle of equivalency of the disorder sources and heat conductivity of solids. Nanosystems: Physics, Chemistry, Mathematics. 2013;4(1): 148–159. (In Russ., abstract in Eng.). Available at: https://w w w.elibrar y.ru/item.asp?id=18964066
Goodenough J. B. Oxide-ion electrolytes. Annual Review of Materials Research. 2003;33(1): 91- 128. https://doi.org/10.1146/annurev.matsci.33.022802.091651
Kendall K. Progress in solid oxide fuel cell materials. International Materials Reviews. 2005;50(5): 257–264. https://doi.org/10.1179/174328005x41131
Fergus J. F. Electrolytes for solid oxide fuel cells. Journal of Power Sources. 2006;162(1): 30–40. https://doi.org/10.1016/j.jpowsour.2006.06.062
Wu J., Wei X., Padture N. P., Klemens P. G., Gell M., García E., Miranzo P., Osendi M. I. Low-thermalconductivity rare-earth zirconates for potential thermal-barrier-coating applications. Journal of the American Ceramic Society. 2002;85(12): 3031–3035. https://doi.org/10.1111/j.1151-2916.2002.tb00574.x
Schulz U., Leyens C., Fritscher K., Peters M., Saruhan-Brings B., Lavigne O., Dorvaux J.-M., Poulain M., Mévrel R., Caliez M. Some recent trends in research and technology of advanced thermal barrier coatings. Aerospace Science and Technology. 2003;7(1): 73–80. https://doi.org/10.1016/s1270-9638(02)00003-2
Sakka Y., Oishi Y., Ando K. Zr-Hf interdiffusion in polycrystalline Y2O3 –(Zr+Hf)O2. Journal of Materials Science. 1982;17(11): 3101–3105. https://doi.org/10.1007/bf01203471
Haering C., Roosen A., Schichl H., Schnoller M. Degradation of the electrical conductivity in stabilized zirconia system. Part. II: Scandia-stabilized zirconia. Solid State Ionics. 2005;176(3-4): 261–268. https://doi.org/10.1016/j.ssi.2004.07.039
Andrievskaya E. R. Phase equilibria in the refractory oxide systems of zirconia, hafnia and yttria with rare-earth oxides. Journal of the European Ceramic Society. 2008;28(12): 2363–2388. https://doi.org/10.1016/j.jeurceramsoc.2008.01.009
Andrievskaya E. R. Phase equilibria in systems of hafnium, zirconium, yttrium oxides with oxides of rare earth elements*. Kiev: Naukova dumka Publ.; 2010. (In Russ.)
Pascual C., Duran P. Subsolidus phase equilibria and ordering in the system ZrO2–Y2O3. Journal of the American Ceramic Society. 1983;66(1): 23–28. https:// doi.org/10.1111/j.1151-2916.1983.tb09961.x
Scott H. G. On the continuous transition between two structure types in the zirconia-gadolinia system. Journal of Materials Science. 1978;13(7): 1592–1593. https://doi.org/10.1007/bf00553219
Maister I. M., Shevchenko A. V., Lopato L. M. Interaction in the system ZrO2–Y2O3– Sc2O3*. Izvestiya Akademii nauk SSSR. Neorganicheskie materialy (Inorganic Materials). 1991;27(11):2337–2341. (In Russ.)
Krzhizhanovskaya V. A. The mechanism of interaction of zirconium and hafnium dioxides with oxides of rare earth elements in solid phases.* Cand. chem. sci. diss. Abstr. Leningrad: 1975. 18 p. (In Russ.)
Scheidecker R. W., Wilder R. W., Moeller H. The system HfO2 – Eu2O3. Journal of the American Ceramic Society. 1977; 60(11-12): 501–504. https://doi.org/10.1111/j.1151-2916.1977.tb14092.x
Yashima M., Ishizawa N., Nama T., Yoshimura M. Stable and metastable phase relationships in the system ZrO2-ErO1.5. Journal of the American Ceramic Society. 1991; 74(3): 510–513. https://doi.org/10.1111/j.1151-2916.1991.tb04052.x
Ruh R., Garrrett H. J., Domagala R. F., Patel V. A. The system zirconia-scandia. Journal of the American Ceramic Society. 1977;60(9-10): 399–403. https://doi.org/10.1111/j.1151-2916.1977.tb15521.x
Thornber M. R., Bevan D. J. M., Summerville E. Mixed oxides of the type MO2 fluorite-M2O3. V. Phase studies in the systems ZrO2–M2O3 (M = Sc, Yb, Er, Dy). Journal of Solid State Chemistry. 1970;1(3-4): 545–553. https://doi.org/10.1016/0022-4596(70)90140-4
Stubican V. S., Corman G. S., Hellmann J. R., Sent G. Phase relationships in some ZrO2 system. In: Advanced in Ceramics. V.12. Science and Technology of Zirconia II. N. Clausen, A. Ruhle, A. Heuer (eds.). Columbus, OH, American Ceramic Soc Inc; 1984. pp. 96–106.
Rouanet A. Contribution a l’etude des systems zircon–oxydes des lanthanides au voisinage de la fusion. Revue Internationale Des Hautes Temperatures et Des Refractaires. 1971;8: 161–180.
Duran P. The system erbia - zirconia. Journal of the American Ceramic Society. 1977;60(11-12): 510–513. https://doi.org/10.1111/j.1151-2916.1977.tb14095.x
Pascual C., Duran P. Phase equilibria and ordering in the erbia-zirconia system. Journal of Materials Science. 1981;16(11): 3067–3076. https://doi.org/10.1007/bf00540314
Noguchi T., Mizuno M., Yamada T. The liquifus curve of the ZrO2-Y2O3 system as measured by a solar furnace. Bulletin of the Chemical Society of Japan. 1970;43(8): 2614–2616. https://doi.org/10.1246/bcsj.43.2614
Yashima M., Kakihana M., Yoshimura M. Metastable-stable phase diagrams in the zirconiacontaining systems utilized in solid-oxide fuel cell application. Solid State Ionics. 1996;86-88: 1131–1149. https://doi.org/10.1016/0167-2738(96)00386-4
Shevchenko A. V., Maister I. M., Lopato L. M. Interaction in HfO2-Sc2O3 and ZrO2–Sc2O3 systems at high temperatures*. Izvestiya Akademii nauk SSSR. Neorganicheskie materialy (Inorganic Materials).1987;23: 1320–1324. (In Russ.)
Zyrin A. V., Red’ko V. P., Lopato L. M. , Shevchenko A. V., Maister I. M., Zaitseva Z. A. Ordered phases in ZrO2–Sc2O3 and HfO2–Sc2O3 systems*. Izvestiya Akademii nauk SSSR. Neorganicheskie materialy (Inorganic Materials). 1987;23: 1325–1329. (In Russ.)
Fedorov P. P. Anneal times determined by studying phase transitions in solid binary systems. Russian Journal of Inorganic Chemistry. 1992;37: 973–975.
Fedorov P. P. Third law of thermodynamics as applied to phase diagrams. Russian Journal of Inorganic Chemistry. 2010;55: 1722–1739. https://doi.org/10.1134/S0036023610110100
Glushkova V. V. Study of the kinetics of solidphase processes in systems with refractory oxides*. In: Thermodynamics and properties of condensed silicate and oxide systems. Bratislava: VEDA; 1976. p. 122–127. (In Russ.)
Hume-Rothery W., Raynor G. V. The structure of metals and alloys. London: The institute of metals; 1956.
Fedorov P. P., Volkov S. N. Au–Cu phase diagram. Russian Journal of Inorganic Chemistry. 2016;61: 772–775. https://doi.org/10.1134/S0036023616060061
Fedorov P. P., Popov A. A., Shubin Yu. V., Chernova E. V. Nickel-platinum phase diagram*. Russian Journal of Inorganic Chemistry. 2022;67(12): 1805–1809. (In Russ.). https://doi.org/10.31857/S0044457X22600748
Fedorov P. P., Shubin Yu. V., Chernova E. V. Copper–palladium phase diagram. Russian Journal of Inorganic Chemistry. 2021;66(6): 891–893. https://doi.org/10.1134/s0036023621050053
Fedorov P. P., Alexandrov A. A., Voronov V. V., Mayakova M. N., Baranchikov A. E., Ivanov V. K. Low-temperature
hase formation in the SrF2 - LaF3 system. Journal of the American Ceramic Society. 2021;104(6): 2836–2848. https://doi.org/10.1111/jace.17666
Hutchings M. T., Clausen K., Dickens M. H., Hayes W., Kjems J. K., Schnabel P. G., Smith C. Investigation of thermally indused anion disorder in fluorutes using neutron scattering techniques. Journal of Physics C: Solid State Physics. 1984;17(22): 3903–3940. https://doi.org/10.1088/0022-3719/17/22/011
Warshaw J., Roy R. Polymorphism of the rare earth sesquioxides. Journal of Physical Chemistry. 1961;65(11): 2048–2051. https://doi.org/10.1021/j100828a030
Fedorov P. P., Nazarkin M. V., Zakalyukin R. M. On polymorphism and morphotropism of rare earth sesquioxides. Crystallography Reports. 2002;47: 281–286. https://doi.org/10.1134/1.1466504
Withers R. L., Thompson J. G., Barlow P. J., Barry J. C. The “defect fluorite” phase in the ZrO2– PrO1.5 system and its relationship to the structure of pyrochlope. Australian Journal of Chemistry. 1992;45(9): 1375–1395. https://doi.org/10.1071/ch9921375
Degtyarev S. A., Voronin G. F. Calculation of the phase diagram in the ZrO2-Y2O3 system*. Russian Journal of Physical Chemistry. 1987;61(3): 617–622. (In Russ.)
Du Y., Jin Z., Huang P. Thermodynamic assessment of the ZrO2–YO1.5 system. Journal of the American Ceramic Society. 1991;74(7): 1569–1577. https://doi.org/10.1111/j.1151-2916.1991.tb07142.x
Jacobson N. S., Liu Z.-K., Kaufman L., Zhang F. Thermodynamic modeling of YO1.5–ZrO2 system. Journal of the American Ceramic Society. 2004;87(8): 1559–1566. https://doi.org/10.1111/j.1551-2916.2004.01559.x
Chen M., Hallstedt B., Gauckler L. J. Thermodynamic modeling of the ZrO2-YO1.5 system. Solid State Ionics. 2004;170(3-4): 255–274. https://doi.org/10.1016/j.ssi.2004.02.017
Tani E., Yoshimura M., Somiya S. Revised phase diagram of the system ZrO2–CeO2 below 1400 C. American Ceramic Society. 1983;66(7): 506–510. https://doi.org/10.1111/j.1151-2916.1983.tb10591.x
Thomson J. B., Armstrong A. R., Bruce P. G. An oxygen-rich pyrochlore with fluorite composition. Journal of Solid State Chemistry. 1999;144(1): 56–62. https://doi.org/10.1006/jssc.1999.8347
Copyright (c) 2022 Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.