Specifics of the formation of regular opal structures from spherical silica particles in various colloidal solutions

Keywords: Opal structures, Evaporation-induced self-assembly method, Tetraethoxysilane, Sedimentation, Lyophilic medium, Iridescence

Abstract

          Photonic crystal opal matrices are bulk spatial periodic structures based on amorphous spherical silica particles whose size is compatible with the wavelengths of the visible light spectrum. These structures are very promising and can be used as matrices for new functional materials.
          The article studies the formation of a regular opal structure on dielectric substrates by means of the evaporation of droplets and layers of colloidal solutions based on water and ethanol with various  oncentrations of spherical SiO2 particles with a diameter of about 250 nm synthesised using the Stöber method.

Downloads

Download data is not yet available.

Author Biographies

Vladislav A. Maslov, Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova str., Moscow 119991, Russian Federation

Senior Researcher, Prokhorov
General Physics Institute of the Russian Academy of
Sciences (Moscow, Russian Federation).

Sergey B. Kravtsov, Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova str., Moscow 119991, Russian Federation

Researcher, Prokhorov General
Physics Institute of the Russian Academy of Sciences
(Moscow, Russian Federation).

Ivan A. Novikov, Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova str., Moscow 119991, Russian Federation

Researcher, Prokhorov General
Physics Institute of the Russian Academy of Sciences
(Moscow, Russian Federation).

Vadim A. Usachev, Bauman Moscow State Technical University 5 2nd Baumanskaya ul., app. 1, Moscow 105005, Russian Federation

PhD in Technical Sciences,
Department Head, Bauman Moscow State Technical
University (Moscow, Russian Federation).

Pavel P. Fedorov, Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova str., Moscow 119991, Russian Federation

DSc in Chemistry, Professor, Chief
Researcher, Prokhorov General Physics Institute of the
Russian Academy of Sciences (Moscow, Russian
Federation).

Vladimir B. Tsvetkov, Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova str., Moscow 119991, Russian Federation

DSc in Physics and
Mathematics, Deputy Director for Research, Prokhorov
General Physics Institute of the Russian Academy of
Sciences (Moscow, Russian Federation).

Evgeniya G. Yarotskaya, Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova str., Moscow 119991, Russian Federation

PhD in Chemistry,
Prokhorov General Physics Institute of the Russian
Academy of Sciences (Moscow, Russian Federation).

References

Deniskina N. D., Kalinin D. V., Kazantseva L. K. Noble opals, natural and synthetic. Novosibirsk: Nauka Publ.; 1987. (in Russ.)

Samoilovich M. I., Ivleva L. I., Tsvetkov M. Yu., Klescheeva S. M. Single crystal SBN: Yb / Opal matrix (SiO2):Er composite as a nanophotonic structure. In: Nanostructured thin films and nanodispersion hardened coatings. 2004. pp. 279–284. (in Russ.)

Kalinin D. V., Serdobintseva V. V., Plekhanov A. N., Sobolev N. V. The mechanism of formation of noble opal regular structures occurred in the form of films on the surface of solids. Doklady Akademii Nauk. 2005;402(2): 227–229. (In Russ.). Available at: https://elibrary.ru/item.asp?id=9149524

Sinitskii A. S., Knotko A. V., Tret’yakov Yu. D. Synthesis of SiO2 photonic crystals via self-organization of colloidal particles. Inorganic Materials. 2005;41(11): 1178–1184. https://doi.org/10.1007/s10789-005-0283-x

Kalinin D. V., Serdobintseva V. V., Shabanov V. F. Growing single crystal opal films from lyophilic suspensions of monodispersie spherical silica particles. Doklady Physics. 2007;52(10): 536–539. https://doi.org/10.1134/S1028335807100060

Kamashev D. V. Influence of synthesis conditions on the morphology and properties of supramolecular structures of silica. Yekaterinburg: URAN, Komi Scientific Center, Institute of Geology; 2007. pp. 34–59. (In Russ.)

Tsvetkov M. Yu. Cand. in phys. and math. sci. diss. Abstr. Irkutsk: Abstract of the Ph.D. thesis. Opal matrix-based nanocomposites as photonic media. Shatura, 2008. 119 p. (in Russ.). Available at: https://www.dissercat.com/content/nanokompozity-naosnove-opalovykh-matrits-kak-fotonnye-sredy

Basiev T. T., Orlovskii Yu. V., Osiko V. V., Samoilovich M. I., Alimov O. K. Conversion of luminescence of laser dyes in opal matrices to stimulated emission. Quantum Electronics. 2008;38(7): 665–669. https://doi.org/10.1070/QE2008v038n07ABEH013714

Photonic crystals and nanocomposites: structure formation, optical and dielectric properties. Shabanov V. F., Zyryanov V. Ya. (Eds.) Novosibirsk: SO RAN Publ.; 2009. pp. 9–41. (in Russ.)

Molchanov S. P., Lebedev-Stepanov P. V., Klimonskiy S. O., Sheberstov K. R., Tretyakov S. Yu., Alfimov M. V. Self-assembly of ordered layers of silica microspheres on a vertical plate. Nanotechnologies in Russia. 2010;5(5-6): 299–303. https://doi.org/10.1134/S1995078010050034

Lebedev-Stepanov P. V., Kadushnikov R. M., Molchanov S. P., Ivanov A. A., Mitrokhin V. P., Vlasov K. O., Rubin N. A., Yurasik G. A., Nazarov V. G., Alfimov M. V. Self-assembly of nanoparticles in the microvolume of a colloidal solution: physics, modeling, experiment. Nanotechnologies in Russia. 2013;8(3-4): 137–162. https://doi.org/10.1134/S1995078013020110

Stober W., Fink A., Bohn E. J. Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science. 1968;26(1): 62–69. https://doi.org/10.1016/0021-9797(68)90272-5

Kolbe G. Das komplexchemiche Verhalten der Kieselsaure. Dissertation. Jena: Friedrich-Schiller Universitat; 1956.

Published
2021-11-25
How to Cite
Maslov, V. A., Kravtsov, S. B., Novikov, I. A., Usachev, V. A., Fedorov, P. P., Tsvetkov, V. B., & Yarotskaya, E. G. (2021). Specifics of the formation of regular opal structures from spherical silica particles in various colloidal solutions. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 24(1), 69-75. https://doi.org/10.17308/kcmf.2022.24/3685
Section
Original articles