Synthesising dispersed powders of CoZn ferrites for microwave absorption

Keywords: Cobalt-zinc ferrite, Microwave absorption, Sol-gel synthesis, Nanoparticles

Abstract

      An important task of chemical materials science is to obtain materials with set parameters and to provide a reliable prediction of their properties. At the moment, an important task is to develop promising absorbing coatings based on dispersed magnetic materials. To ensure more effective use of dispersed powders of cobalt-zinc ferrite for fillers absorbing microwave radiation, we studied the changes in their magnetic properties and morphology depending on the conditions of the sol-gel synthesis.
     In our study, we synthesised Co0.65Zn0.35Fe2O4 ferrite powders of various degree of dispersion using the sol-gel method. The samples were analysed using X-ray diffractometry. The microstructure and the morphology of the nanoparticles were studied by means of scanning electron microscopy. The ratio of the concentration of metal atoms in ferrite powders and the features of their distribution on the surface of the particles were determined by energy dispersive X-ray spectroscopy. Magnetometry was used to determine the specific saturation magnetization and the coercive force.
       The study demonstrated that the main factor resulting in low values of the saturation magnetization of the cobalt ferrite nanopaticles is the formation of the magnetic dead layer on their surface. This layer is formed due to a number of factors including noncollinearity of spins, disordering of cations, defectiveness, amorphous state, and the difference in the composition occurring because the processes of reciprocal diffusion of cations during and the formation of the spinel structure during the synthesis are not complete.
        The study determined the ways to reduce the size of the inactive magnetic layer by controlling the parameters of the solgel synthesis in order to find effective methods of obtaining ferrite powders with increased magnetization, degree of crystallinity and the intermediate particles size between a superparamagnetic and a multidomain state. Such materials can be used as fillers for coating absorbing microwave radiation.

Downloads

Download data is not yet available.

Author Biographies

Dmitry V. Ivashenko, Belarusian State University, 4 Nezavisimosti avenue, Minsk 220030, Belarus

M. S. (Chemistry), Belarusian
State University (Minsk, Belarus).

Diana A. Urbanovich, Belarusian State University, 4 Nezavisimosti avenue, Minsk 220030, Belarus

Belarusian State University
(Minsk, Belarus).

Ilya Y. Palyn, Belarusian State University, 4 Nezavisimosti avenue, Minsk 220030, Belarus

Belarusian State University (Minsk,
Belarus).

Maxim V. Bushinsky, SSPA “Scientific-Practical Materials Research Centre of NAS of Belarus” 19 Pietrusia Broŭki, Minsk 220072, Belarus

Cand. Sci. (Phys.–Math.), Head
of the Laboratory of Non-metallic Ferromagnets SSPA
“Scientific-Practical Materials Research Centre of
National Academy of Sciences of Belarus” (Minsk,
Belarus).

Alexey V. Trukhanov, SSPA “Scientific-Practical Materials Research Centre of NAS of Belarus” 19 Pietrusia Broŭki, Minsk 220072, Belarus

Dr. Sci. (Phys.–Math.), Deputy
General Director for Research and Innovation SSPA
“Scientific-Practical Materials Research Centre of
National Academy of Sciences of Belarus” (Minsk,
Belarus).

Vladimir V. Pankov, Belarusian State University, 4 Nezavisimosti avenue, Minsk 220030, Belarus

Dr. Sci. (Chem.), Professor at
Department of Physical Chemistry, Belarusian State
University (Minsk, Belarus).

References

Houbi A., Aldashevich Z. A., Atassi Y., Telmanovna Z. B., Saule M., Kubanych K. Microwave absorbing properties of ferrites and their composites: A review. Journal of Magnetism and Magnetic Materials. 2021;529: 167839. https://doi.org/10.1016/j.jmmm.2021.167839

Yin P., Zhang L., Feng X., Wang J., Dai J., Tang Y. Recent progress in ferrite microwave absorbing composites. Integrated Ferroelectrics. 2020;211(1): 82–101. https://doi.org/10.1080/10584587.2020.1803677

Kodama R. H., Berkowitz A. E., McNiff Jr E. J., Foner S. Surface spin disorder in ferrite nanoparticles. Journal of Applied Physics. 1997;81(8): 5552–5557. https://doi.org/10.1063/1.364659

Thakur P., Taneja S., Chahar D., Ravelo B., Thakur A. Recent advances on synthesis, characterization and high frequency applications of Ni-Zn ferrite nanoparticles. Journal of Magnetism and Magnetic Materials. 2021;530: 167925. https://doi.org/10.1016/j.jmmm.2021.167925

Martinez B., Obradors X., Balcells L., Rouanet A., Monty C.. Low temperature surface spin-glass transition in g-Fe2O3 nanoparticles. Physical Review Letters. 1998;80(1): 181. https://doi.org/10.1103/PhysRev-Lett.80.181

Leite E. S., Coaquira J. A., Viali W. R., Sartoratto P. P., De Almeida R. L., Morais P. C., Malik S. K. Spinglass- like characteristics of extremely small g-Fe2O3 nanoparticles. Journal of Physics: Conference Series. 2010;200(7): 072060. https://doi.org/10.1088/1742-6596/200/7/072060

El-Sayed H. M., Ali I. A., Azzam A., Sattar A. A. Influence of the magnetic dead layer thickness of Mg- Zn ferrites nanoparticle on their magnetic properties. Journal of Magnetism and Magnetic Materials. 2017;424: 226–232. https://doi.org/10.1016/j.jmmm.2016.10.049

Khah F. M., Arab A., Kiani E. The effect of thickness of the dead layer on the magnetization of Ni0. 5–CoxZn0.5Fe2O4 ferrite nanopowders and determination of optimal permeability. Journal of Superconductivity and Novel Magnetism. 2021;34: 2699–708. https://doi.org/10.1007/s10948-021-05976-x

Singh J. P., Dixit G., Srivastava R. C., Agrawal H. M., Reddy V. R., Gupta A. Observation of bulk like magnetic ordering below the blocking temperature in nanosized zinc ferrite. Journal of magnetism and magnetic materials. 2012;324(16): 2553–2559. https://doi.org/10.1016/j.jmmm.2012.03.045

Meidanchi A., Ansari H. Copper spinel ferrite superparamagnetic nanoparticles as a novel radiotherapy enhancer effect in cancer treatment. Journal of Cluster Science. 2021;32: 657–663. https://doi.org/10.1007/s10876-020-01832-5

Sharma R., Thakur P., Sharma P., Sharma V. Ferrimagnetic Ni2+ doped Mg-Zn spinel ferrite nanoparticles for high density information storage. Journal of Alloys and Compounds. 2017;704: 7–17. https://doi.org/10.1016/j.jallcom.2017.02.021

Harasawa T., Suzuki R., Shimizu O., Olcer S., Eleftheriou E. Barium-ferrite particulate media for high-recording-density tape storage systems. IEEE transactions on magnetics. 2010;46(6): 1894–1897. https://doi.org/10.1109/TMAG.2010.2042286

Nasrin S., Hoque S. M., Chowdhury F. U., Hossen M. M. Influence of Zn substitution on the structural and magnetic properties of Co1–xZnxFe2O4 nano-ferrites. IOSR Journal of Applied Physics. 2014;6(2): 58–65. https://doi.org/10.9790/4861-06235865

Vinosha P. A., Manikandan A., Ceicilia A. S., Dinesh A., Nirmala G. F., Preetha A. C., Slimani Y., Almessiere M. A., Baykal A., Xavier B. Review on recent advances of zinc substituted cobalt ferrite nanoparticles: Synthesis characterization and diverse applications. Ceramics International. 2021;47(8): 10512–10535. https://doi.org/10.1016/j.ceramint.2020.12.289

Kaur P., Chawla S. K., Meena S. S., Yusuf S. M., Pubby K., Narang S. B. Modulation of physico-chemical, magnetic, microwave and electromagnetic properties of nanocrystalline strontium hexaferrite by Co-Zr doping synthesized using citrate precursor sol-gel method. Ceramics International. 2017;43(1): 590–598. https://doi.org/10.1016/j.cera-mint.2016.09.199

Sajjia M., Oubaha M., Hasanuzzaman M., Olabi A. G. Developments of cobalt ferrite nanoparticles prepared by the sol–gel process. Ceramics International. 2014;40(1): 1147–1154. https://doi.org/10.1016/j.ceramint.2013.06.116

Sutka A., Mezinskis G. Sol-gel auto-combustion synthesis of spinel-type ferrite nanomaterials. Frontiers of Materials Science. 2012;6(2): 128–141. https://doi.org/10.1007/s11706-012-0167-3

Ashour A. H., El-Batal A. I., Maksoud M. A., El-Sayyad G. S., Labib S. H., Abdeltwab E., El-Okr M. M. Antimicrobial activity of metal-substituted cobalt ferrite nanoparticles synthesized by sol–gel technique. Particuology. 2018;40: 141–151. https://doi.org/10.1016/j.partic.2017.12.001

Karimi Z., Mohammadifar Y., Shokrollahi H., Asl S. K., Yousefi G., Karimi L. Magnetic and structural properties of nano sized Dy-doped cobalt ferrite synthesized by co-precipitation. Journal of Magnetism and Magnetic Materials. 2014;361: 150–156. https://doi.org/10.1016/j.jmmm.2014.01.016

Shahbahrami B., Rabiee S. M., Shidpour R., Salimi-Kenari H. Influence of calcination parameters on the microstructure, magnetic and hyperthermia properties of Zn-Co ferrite nanoparticles. Journal of Electroceramics. 2022;48: 157–168. https://doi.org/10.1007/s10832-022-00281-y

Sakurai S., Nishino H, Futaba DN, Yasuda S, Yamada T, Maigne A, Matsuo Y, Nakamura E, Yumura M., Hata K. Role of subsurface diffusion and Ostwald ripening in catalyst formation for single-walled carbon nanotube forest growth. Journal of the American Chemical Society. 2012;134(4): 2148–2153. https://doi.org/10.1021/ja208706c

Rafeeq S. N., Ismail M. M., Sulaiman J. M. Magnetic and dielectric properties of CoFe2O4 and CoxZn1–xFe2O4 nanoparticles synthesized using sol-gel method. Journal of Magnetics. 2017;22(3): 406–413. https://doi.org/10.4283/JMAG.2017.22.3.406

Tables of physical quantities*. I. K. Kikoin (ed.). Moscow: Atomizdat Publ.; 1976. 1006 p. (In Russ.)

Karaagac O., Yildiz B. B., Köçkar H. The influence of synthesis parameters on one-step synthesized superparamagnetic cobalt ferrite nanoparticles with high saturation magnetization. Journal of Magnetism and Magnetic Materials. 2019;473: 262–267. https://doi.org/10.1016/j.jmmm.2018.10.063

Frolov G. I., Bachina O. I., Zav’yalova M. M., Ravochkin S. I. Magnetic properties of nanoparticles of 3d metals. Technical Physics. 2008;53(8): 1059–1064. https://doi.org/10.1134/s1063784208080136

Chinnasamy C. N., Jeyadevan B., Shinoda K., Tohji K., Djayaprawira D. J., Takahashi M., Joseyphus R. J., Narayanasamy A. Unusually high coercivity and critical single-domain size of nearly monodispersed CoFe2O4 nanoparticles. Applied Physics Letters. 2003; 83(14): 2862–2864. https://doi.org/10.1063/1.1616655

Rao K. S., Nayakulu S. R., Varma M. C., Choudary G. S., Rao K. H. Controlled phase evolution and the occurrence of single domain CoFe2O4 nanoparticles synthesized by PVA assisted sol-gel method. Journal of Magnetism and Magnetic Materials. 2018;451: 602–608. https://doi.org/10.1016/j.jmmm.2017.11.069

Khader S. A., Sankarappa T. Dielectric, magnetic and ferroelectric studies in (x)Mn0.5Zn0.5Fe2O4 + (1–x) BaTiO3 magnetoelectric nano-composites. Materials Today: Proceedings. 2016;3(6): 2358–2365. https://doi.org/10.1016/j.matpr.2016.04.148

Saffari F., Kameli P., Rahimi M., Ahmadvand H., Salamati H. Effects of Co-substitution on the structural and magnetic properties of NiCoxFe2-xO4 ferrite nanoparticles. Ceramics International. 2015;41(6): 7352–7358. https://doi.org/10.1016/j.ceramint.2015.02.038

Negi D. S., Sharona H., Bhat U., Palchoudhury S., Gupta A., Datta R. Surface spin canting in Fe3O4 and CoFe2O4 nanoparticles probed by high-resolution electron energy loss spectroscopy. Physical Review B. 201730;95(17): 174444. https://doi.org/10.1103/PhysRevB.95.174444

Published
2022-11-29
How to Cite
Ivashenko, D. V., Urbanovich, D. A., Palyn, I. Y., Bushinsky, M. V., Trukhanov, A. V., & Pankov, V. V. (2022). Synthesising dispersed powders of CoZn ferrites for microwave absorption. Condensed Matter and Interphases, 25(1), 37-46. https://doi.org/10.17308/kcmf.2023.25/10646
Section
Original articles