Synthesising dispersed powders of CoZn ferrites for microwave absorption
Abstract
An important task of chemical materials science is to obtain materials with set parameters and to provide a reliable prediction of their properties. At the moment, an important task is to develop promising absorbing coatings based on dispersed magnetic materials. To ensure more effective use of dispersed powders of cobalt-zinc ferrite for fillers absorbing microwave radiation, we studied the changes in their magnetic properties and morphology depending on the conditions of the sol-gel synthesis.
In our study, we synthesised Co0.65Zn0.35Fe2O4 ferrite powders of various degree of dispersion using the sol-gel method. The samples were analysed using X-ray diffractometry. The microstructure and the morphology of the nanoparticles were studied by means of scanning electron microscopy. The ratio of the concentration of metal atoms in ferrite powders and the features of their distribution on the surface of the particles were determined by energy dispersive X-ray spectroscopy. Magnetometry was used to determine the specific saturation magnetization and the coercive force.
The study demonstrated that the main factor resulting in low values of the saturation magnetization of the cobalt ferrite nanopaticles is the formation of the magnetic dead layer on their surface. This layer is formed due to a number of factors including noncollinearity of spins, disordering of cations, defectiveness, amorphous state, and the difference in the composition occurring because the processes of reciprocal diffusion of cations during and the formation of the spinel structure during the synthesis are not complete.
The study determined the ways to reduce the size of the inactive magnetic layer by controlling the parameters of the solgel synthesis in order to find effective methods of obtaining ferrite powders with increased magnetization, degree of crystallinity and the intermediate particles size between a superparamagnetic and a multidomain state. Such materials can be used as fillers for coating absorbing microwave radiation.
Downloads
References
Houbi A., Aldashevich Z. A., Atassi Y., Telmanovna Z. B., Saule M., Kubanych K. Microwave absorbing properties of ferrites and their composites: A review. Journal of Magnetism and Magnetic Materials. 2021;529: 167839. https://doi.org/10.1016/j.jmmm.2021.167839
Yin P., Zhang L., Feng X., Wang J., Dai J., Tang Y. Recent progress in ferrite microwave absorbing composites. Integrated Ferroelectrics. 2020;211(1): 82–101. https://doi.org/10.1080/10584587.2020.1803677
Kodama R. H., Berkowitz A. E., McNiff Jr E. J., Foner S. Surface spin disorder in ferrite nanoparticles. Journal of Applied Physics. 1997;81(8): 5552–5557. https://doi.org/10.1063/1.364659
Thakur P., Taneja S., Chahar D., Ravelo B., Thakur A. Recent advances on synthesis, characterization and high frequency applications of Ni-Zn ferrite nanoparticles. Journal of Magnetism and Magnetic Materials. 2021;530: 167925. https://doi.org/10.1016/j.jmmm.2021.167925
Martinez B., Obradors X., Balcells L., Rouanet A., Monty C.. Low temperature surface spin-glass transition in g-Fe2O3 nanoparticles. Physical Review Letters. 1998;80(1): 181. https://doi.org/10.1103/PhysRev-Lett.80.181
Leite E. S., Coaquira J. A., Viali W. R., Sartoratto P. P., De Almeida R. L., Morais P. C., Malik S. K. Spinglass- like characteristics of extremely small g-Fe2O3 nanoparticles. Journal of Physics: Conference Series. 2010;200(7): 072060. https://doi.org/10.1088/1742-6596/200/7/072060
El-Sayed H. M., Ali I. A., Azzam A., Sattar A. A. Influence of the magnetic dead layer thickness of Mg- Zn ferrites nanoparticle on their magnetic properties. Journal of Magnetism and Magnetic Materials. 2017;424: 226–232. https://doi.org/10.1016/j.jmmm.2016.10.049
Khah F. M., Arab A., Kiani E. The effect of thickness of the dead layer on the magnetization of Ni0. 5–CoxZn0.5Fe2O4 ferrite nanopowders and determination of optimal permeability. Journal of Superconductivity and Novel Magnetism. 2021;34: 2699–708. https://doi.org/10.1007/s10948-021-05976-x
Singh J. P., Dixit G., Srivastava R. C., Agrawal H. M., Reddy V. R., Gupta A. Observation of bulk like magnetic ordering below the blocking temperature in nanosized zinc ferrite. Journal of magnetism and magnetic materials. 2012;324(16): 2553–2559. https://doi.org/10.1016/j.jmmm.2012.03.045
Meidanchi A., Ansari H. Copper spinel ferrite superparamagnetic nanoparticles as a novel radiotherapy enhancer effect in cancer treatment. Journal of Cluster Science. 2021;32: 657–663. https://doi.org/10.1007/s10876-020-01832-5
Sharma R., Thakur P., Sharma P., Sharma V. Ferrimagnetic Ni2+ doped Mg-Zn spinel ferrite nanoparticles for high density information storage. Journal of Alloys and Compounds. 2017;704: 7–17. https://doi.org/10.1016/j.jallcom.2017.02.021
Harasawa T., Suzuki R., Shimizu O., Olcer S., Eleftheriou E. Barium-ferrite particulate media for high-recording-density tape storage systems. IEEE transactions on magnetics. 2010;46(6): 1894–1897. https://doi.org/10.1109/TMAG.2010.2042286
Nasrin S., Hoque S. M., Chowdhury F. U., Hossen M. M. Influence of Zn substitution on the structural and magnetic properties of Co1–xZnxFe2O4 nano-ferrites. IOSR Journal of Applied Physics. 2014;6(2): 58–65. https://doi.org/10.9790/4861-06235865
Vinosha P. A., Manikandan A., Ceicilia A. S., Dinesh A., Nirmala G. F., Preetha A. C., Slimani Y., Almessiere M. A., Baykal A., Xavier B. Review on recent advances of zinc substituted cobalt ferrite nanoparticles: Synthesis characterization and diverse applications. Ceramics International. 2021;47(8): 10512–10535. https://doi.org/10.1016/j.ceramint.2020.12.289
Kaur P., Chawla S. K., Meena S. S., Yusuf S. M., Pubby K., Narang S. B. Modulation of physico-chemical, magnetic, microwave and electromagnetic properties of nanocrystalline strontium hexaferrite by Co-Zr doping synthesized using citrate precursor sol-gel method. Ceramics International. 2017;43(1): 590–598. https://doi.org/10.1016/j.cera-mint.2016.09.199
Sajjia M., Oubaha M., Hasanuzzaman M., Olabi A. G. Developments of cobalt ferrite nanoparticles prepared by the sol–gel process. Ceramics International. 2014;40(1): 1147–1154. https://doi.org/10.1016/j.ceramint.2013.06.116
Sutka A., Mezinskis G. Sol-gel auto-combustion synthesis of spinel-type ferrite nanomaterials. Frontiers of Materials Science. 2012;6(2): 128–141. https://doi.org/10.1007/s11706-012-0167-3
Ashour A. H., El-Batal A. I., Maksoud M. A., El-Sayyad G. S., Labib S. H., Abdeltwab E., El-Okr M. M. Antimicrobial activity of metal-substituted cobalt ferrite nanoparticles synthesized by sol–gel technique. Particuology. 2018;40: 141–151. https://doi.org/10.1016/j.partic.2017.12.001
Karimi Z., Mohammadifar Y., Shokrollahi H., Asl S. K., Yousefi G., Karimi L. Magnetic and structural properties of nano sized Dy-doped cobalt ferrite synthesized by co-precipitation. Journal of Magnetism and Magnetic Materials. 2014;361: 150–156. https://doi.org/10.1016/j.jmmm.2014.01.016
Shahbahrami B., Rabiee S. M., Shidpour R., Salimi-Kenari H. Influence of calcination parameters on the microstructure, magnetic and hyperthermia properties of Zn-Co ferrite nanoparticles. Journal of Electroceramics. 2022;48: 157–168. https://doi.org/10.1007/s10832-022-00281-y
Sakurai S., Nishino H, Futaba DN, Yasuda S, Yamada T, Maigne A, Matsuo Y, Nakamura E, Yumura M., Hata K. Role of subsurface diffusion and Ostwald ripening in catalyst formation for single-walled carbon nanotube forest growth. Journal of the American Chemical Society. 2012;134(4): 2148–2153. https://doi.org/10.1021/ja208706c
Rafeeq S. N., Ismail M. M., Sulaiman J. M. Magnetic and dielectric properties of CoFe2O4 and CoxZn1–xFe2O4 nanoparticles synthesized using sol-gel method. Journal of Magnetics. 2017;22(3): 406–413. https://doi.org/10.4283/JMAG.2017.22.3.406
Tables of physical quantities*. I. K. Kikoin (ed.). Moscow: Atomizdat Publ.; 1976. 1006 p. (In Russ.)
Karaagac O., Yildiz B. B., Köçkar H. The influence of synthesis parameters on one-step synthesized superparamagnetic cobalt ferrite nanoparticles with high saturation magnetization. Journal of Magnetism and Magnetic Materials. 2019;473: 262–267. https://doi.org/10.1016/j.jmmm.2018.10.063
Frolov G. I., Bachina O. I., Zav’yalova M. M., Ravochkin S. I. Magnetic properties of nanoparticles of 3d metals. Technical Physics. 2008;53(8): 1059–1064. https://doi.org/10.1134/s1063784208080136
Chinnasamy C. N., Jeyadevan B., Shinoda K., Tohji K., Djayaprawira D. J., Takahashi M., Joseyphus R. J., Narayanasamy A. Unusually high coercivity and critical single-domain size of nearly monodispersed CoFe2O4 nanoparticles. Applied Physics Letters. 2003; 83(14): 2862–2864. https://doi.org/10.1063/1.1616655
Rao K. S., Nayakulu S. R., Varma M. C., Choudary G. S., Rao K. H. Controlled phase evolution and the occurrence of single domain CoFe2O4 nanoparticles synthesized by PVA assisted sol-gel method. Journal of Magnetism and Magnetic Materials. 2018;451: 602–608. https://doi.org/10.1016/j.jmmm.2017.11.069
Khader S. A., Sankarappa T. Dielectric, magnetic and ferroelectric studies in (x)Mn0.5Zn0.5Fe2O4 + (1–x) BaTiO3 magnetoelectric nano-composites. Materials Today: Proceedings. 2016;3(6): 2358–2365. https://doi.org/10.1016/j.matpr.2016.04.148
Saffari F., Kameli P., Rahimi M., Ahmadvand H., Salamati H. Effects of Co-substitution on the structural and magnetic properties of NiCoxFe2-xO4 ferrite nanoparticles. Ceramics International. 2015;41(6): 7352–7358. https://doi.org/10.1016/j.ceramint.2015.02.038
Negi D. S., Sharona H., Bhat U., Palchoudhury S., Gupta A., Datta R. Surface spin canting in Fe3O4 and CoFe2O4 nanoparticles probed by high-resolution electron energy loss spectroscopy. Physical Review B. 201730;95(17): 174444. https://doi.org/10.1103/PhysRevB.95.174444
Copyright (c) 2022 Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.