STRUCTURAL AND ESR ANALYSIS OF THE PREPARED Zn1–xMnxSe COMPOUNDS

  • I. K. El Zawawi professor, head of Physics Division, National Research Center, Dokki, Cairo, Egypt; tel.: +20102337514; e-mail: enaselza1@yahoo.com
  • K. Sedeek head of Physics Department, Faculty of Science (Girls), El-Azhar University, 11884, Nasr City, Cairo, Egypt
  • Manal A. Mahdy researcher assistant (PHD student), Department of Solid State Physics, National Research Center, Dokki, Cairo, Egypt; tel.: +20121271138; e-mail: mams411@gmail.com
  • A. Adam grand PhD, professor, Physics Department, Faculty of Science (Girls), El-Azhar University, 11884, Nasr City, Cairo, Egypt
Keywords: Zn1–xMnxSe, EDX, XRD, ESR.

Abstract

Zn1–xMnxSe compound semiconductors with different Mn content have been successfully 1–x synthesized via solid solution method. The energy dispersive X-ray analysis (EDX) of as-prepared Zn1–xMnxSe compounds were carried out and showed that Mn contents are 0.0, 0.07, 0.14 and 0.23. 1–nx The X-ray powder diffraction (XRD) patterns showed polycrystalline single phase cubic (Zinc blende) structures for all examined samples. The lattice parameter and cell volume were determined and reveal that both are increasing by raising Mn2+ content (x). XRD analysis showed that Mn incorpo rated as interstitial sites inside the lattice. The expected interstitial site to be occupied with Mn2+ cations are that of Wykoff s notation (b) with coordinates of equivalent positions 1/2, 1/2, 1/2. The Zn1–xMnxSe powder compounds were examined by electron spin resonance (ESR) technique and 1–nx reveal a broadening signal increases by raising Mn contents x = 0.07, 0.14 and 0.23. The Lande-g factor was determined for the examined samples. 

Downloads

Download data is not yet available.

References

1. Hoase M. A., Que J., De Puvdt J. M., Cheng H. // Appl. Phys. Lett. 1991. V. 59. P. 1272.
2. Jean H., Ding J., Patterson W., et al. // Appl. Phys. Lett. 1991. Vol. 59. P. 3619.
3. Katayama K., Yao H., Nakanishi F., et al. // Appl. Phys. Lett. 1998. V. 73. P. 102.
4. Bhahada K. C., Tripathi B., Acharya N. K., et al. // Chalcogenide Lett. 2008. V. 5. P. 137.
5. Klik M. A. J., Gregorkiewicz T., Yassievich I. N., et al. // Phys. Rev. B. 2005. V. 72. P. 125205.
6. Oh D. C., Chang J. H., Takai T., et al. // J. Cryst. Growth. 2003. V. 251. P. 607.
7. Ebe H., Sakurai F., Chen Z. Q., et al. // J. Crys. Growth. 2002. V. 237—239. P. 1566.
8. Li H., Jie W., Yang L., et al. // Mater. Sci. in Semicond. Proc. 2006. V. 9. P. 151.
9. Li H., Jie W. // J. Cryst. Growth 2003. V. 257. P. 110. 10. Winz K., Fortmann C. M., Eickhoff Th., et al. // Sol. Energy Mater. Solar cells. 1997. V. 49. P. 195.
11. Dona J. M., Herrero J. // J. Electrochem. Soc. 1995. V. 142. P. 764.
12. Jonker B. T., Park Y. D., Bennelt B. R., et al. // Phys. Rev. B. 2000. V. 62. P. 8180.
13. Yoder-Short D. R., Debska U., Furdyna J. K. // J. Appl. Phys. 1985. V. 58. P. 4056.
14. Lv R., Cao C., Zhai H., et al. // Solid State Commun. 2004. V. 130. P. 241.
15. Robinson L. M., PhD thesis in physics, University of Cincinatte, college of Arts and Science, Physics Department, 2000. P. 16.
16. Shi L., Xu Y., Li Q. // Solid State Commun. 2008. Vol. 146. P. 384.
17. Hwang S., Lee J., Lee H., et al. // Mater. Res. Soc. Symp. Proc. 2007. V. 963.
18. Shannon R. D. // Acta. Crystallogr. 1976. V. A32. P. 751.
19. Razeghi M. Fundamentals of Solid State Engineering, Springer 2006. P. 30.
20. Press K. International Table for Crystallography, Birminghan England 1969. 1.
21. Beermann P. A. G., McGarvey B. R., Muralidharan S., Sung R. C. W. // Chem. Mater. 2004. V. 16. P. 915.
22. Ikeya M. New Applications of Electron Spin Resonance, M. R. Zimmerman and N. Whitehead, New Jersey, London Hong Kong. 1993. P. 36.
23. Wang C., Gao X., Ma Q., Su X. // J. Mater. Chem. 2009. V. 19. P. 7016.
24. Yeom T. H., Lee Y. H., Hahn T. S., et al. // J. Appl. Phys. 1996. V. 79. P. 1004.
25. Lakshmi P. V. B., Raj K. S., Ramachandran K. // Cryst. Res. Technol. 2009. V. 44. P. 153.
26. Ozawa M., Suzuki S. // J. Mater. Sci. Lett. 1994. V. 13. P. 435.
27. Norris D. J., Yao N., Charnock F. T., Kennedy T. A. // Nano Letters. 2001. V. 1. P. 3.
28. Axmann Y. PhD thesis, École Polytechnique Fédérale De Lausanne 2004. P. 33.
29. Norman T. J., Magana D., Wilson T., et al. // J. Phys. Chem. 2003. V. B 107. P. 6309.
Published
2010-02-22
How to Cite
Zawawi, I. K. E., Sedeek, K., Mahdy, M. A., & Adam, A. (2010). STRUCTURAL AND ESR ANALYSIS OF THE PREPARED Zn1–xMnxSe COMPOUNDS. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 12(1), 9-16. Retrieved from https://journals.vsu.ru/kcmf/article/view/1090
Section
Статьи