STRUCTURAL AND ESR ANALYSIS OF THE PREPARED Zn1–xMnxSe COMPOUNDS
Abstract
Zn1–xMnxSe compound semiconductors with different Mn content have been successfully 1–x synthesized via solid solution method. The energy dispersive X-ray analysis (EDX) of as-prepared Zn1–xMnxSe compounds were carried out and showed that Mn contents are 0.0, 0.07, 0.14 and 0.23. 1–nx The X-ray powder diffraction (XRD) patterns showed polycrystalline single phase cubic (Zinc blende) structures for all examined samples. The lattice parameter and cell volume were determined and reveal that both are increasing by raising Mn2+ content (x). XRD analysis showed that Mn incorpo rated as interstitial sites inside the lattice. The expected interstitial site to be occupied with Mn2+ cations are that of Wykoff s notation (b) with coordinates of equivalent positions 1/2, 1/2, 1/2. The Zn1–xMnxSe powder compounds were examined by electron spin resonance (ESR) technique and 1–nx reveal a broadening signal increases by raising Mn contents x = 0.07, 0.14 and 0.23. The Lande-g factor was determined for the examined samples.
Downloads
References
2. Jean H., Ding J., Patterson W., et al. // Appl. Phys. Lett. 1991. Vol. 59. P. 3619.
3. Katayama K., Yao H., Nakanishi F., et al. // Appl. Phys. Lett. 1998. V. 73. P. 102.
4. Bhahada K. C., Tripathi B., Acharya N. K., et al. // Chalcogenide Lett. 2008. V. 5. P. 137.
5. Klik M. A. J., Gregorkiewicz T., Yassievich I. N., et al. // Phys. Rev. B. 2005. V. 72. P. 125205.
6. Oh D. C., Chang J. H., Takai T., et al. // J. Cryst. Growth. 2003. V. 251. P. 607.
7. Ebe H., Sakurai F., Chen Z. Q., et al. // J. Crys. Growth. 2002. V. 237—239. P. 1566.
8. Li H., Jie W., Yang L., et al. // Mater. Sci. in Semicond. Proc. 2006. V. 9. P. 151.
9. Li H., Jie W. // J. Cryst. Growth 2003. V. 257. P. 110. 10. Winz K., Fortmann C. M., Eickhoff Th., et al. // Sol. Energy Mater. Solar cells. 1997. V. 49. P. 195.
11. Dona J. M., Herrero J. // J. Electrochem. Soc. 1995. V. 142. P. 764.
12. Jonker B. T., Park Y. D., Bennelt B. R., et al. // Phys. Rev. B. 2000. V. 62. P. 8180.
13. Yoder-Short D. R., Debska U., Furdyna J. K. // J. Appl. Phys. 1985. V. 58. P. 4056.
14. Lv R., Cao C., Zhai H., et al. // Solid State Commun. 2004. V. 130. P. 241.
15. Robinson L. M., PhD thesis in physics, University of Cincinatte, college of Arts and Science, Physics Department, 2000. P. 16.
16. Shi L., Xu Y., Li Q. // Solid State Commun. 2008. Vol. 146. P. 384.
17. Hwang S., Lee J., Lee H., et al. // Mater. Res. Soc. Symp. Proc. 2007. V. 963.
18. Shannon R. D. // Acta. Crystallogr. 1976. V. A32. P. 751.
19. Razeghi M. Fundamentals of Solid State Engineering, Springer 2006. P. 30.
20. Press K. International Table for Crystallography, Birminghan England 1969. 1.
21. Beermann P. A. G., McGarvey B. R., Muralidharan S., Sung R. C. W. // Chem. Mater. 2004. V. 16. P. 915.
22. Ikeya M. New Applications of Electron Spin Resonance, M. R. Zimmerman and N. Whitehead, New Jersey, London Hong Kong. 1993. P. 36.
23. Wang C., Gao X., Ma Q., Su X. // J. Mater. Chem. 2009. V. 19. P. 7016.
24. Yeom T. H., Lee Y. H., Hahn T. S., et al. // J. Appl. Phys. 1996. V. 79. P. 1004.
25. Lakshmi P. V. B., Raj K. S., Ramachandran K. // Cryst. Res. Technol. 2009. V. 44. P. 153.
26. Ozawa M., Suzuki S. // J. Mater. Sci. Lett. 1994. V. 13. P. 435.
27. Norris D. J., Yao N., Charnock F. T., Kennedy T. A. // Nano Letters. 2001. V. 1. P. 3.
28. Axmann Y. PhD thesis, École Polytechnique Fédérale De Lausanne 2004. P. 33.
29. Norman T. J., Magana D., Wilson T., et al. // J. Phys. Chem. 2003. V. B 107. P. 6309.