Dispersed copper (I) oxide particles encapsulated by polylactide

  • Maxim P. Danilaev Kazan National Research Technical University named after A. N. Tupolev – KAI, 10 К. Marx str., Kazan 420111, Republic of Tatarstan, Russian Federation https://orcid.org/0000-0002-7733-9200
  • Nikolay V. Dorogov Kazan National Research Technical University named after A. N. Tupolev – KAI, 10 К. Marx str., Kazan 420111, Republic of Tatarstan, Russian Federation https://orcid.org/0000-0001-6750-6629
  • Sergey V. Drobushev Kazan National Research Technical University named after A. N. Tupolev – KAI, 10 К. Marx str., Kazan 420111, Republic of Tatarstan, Russian Federation
  • Sergey A. Karandashov Kazan National Research Technical University named after A. N. Tupolev – KAI, 10 К. Marx str., Kazan 420111, Republic of Tatarstan, Russian Federation https://orcid.org/0000-0001-7608-6531
  • Mikhail A. Klabukov Kazan National Research Technical University named after A. N. Tupolev – KAI, 10 К. Marx str., Kazan 420111, Republic of Tatarstan, Russian Federation https://orcid.org/0000-0002-9812-7725
  • Vladimir A. Kuklin Kazan National Research Technical University named after A. N. Tupolev – KAI, 10 К. Marx str., Kazan 420111, Republic of Tatarstan, Russian Federation; Kazan Federal University, 18 Кremlevskay str., Kazan 420018, Republic of Tatarstan, Russian Federation http://orcid.org/0000-0003-4254-5837
Keywords: Encapsulation, Dispersed particles of copper (I) oxide, Polylactide

Abstract

     One of the approaches for the production of polymer composite materials with a biocidal effect is based on the use of dispersed particles of some metal oxides as a filler (for example, copper oxide or zinc oxide). Such an approach allows not only providing a biocidal effect, but also increasing such mechanical characteristics as the modulus of elasticity, hardness, and abrasion resistance. The mechanical characteristics of such polymer composite materials can be controlled by formation of a sheath (for example, from polylactide) of a given thickness on the surfaces of dispersed particles. Polylactide is a biodegradable polymer, widely used as coating material for particles with biocidal properties. The parameters of the methods for forming a polylactide sheath are determined by the sheath’s thickness and the sheath’s adhesion to the particle surface. The purpose of the study was to determine the parameters of the polymer sheath’s formation on the surfaces of dispersed submicron copper oxide (I) particles during coacervation of polylactide from the solution.
      The encapsulation of copper (I) oxide particles was carried out by the coacervation process in a solution. Polylactide was displaced from the solution in benzene by hexane in the presence of copper (I) oxide particles. It was shown that a sheath thickness of about 250 nm can be obtained by using the polylactide sheath formation method. The recommended parameters of the polylactide sheath formation method were determined: solution temperature of 35÷38 °C, hexane volume not more than 30±2 ml. The sheath had weak adhesion to particle surfaces: adhesion was determined by the roughness of the particle
surface. 
       The mechanical characteristics of the epoxy resin ED-20 polymer composition filled with the encapsulated particles were considered in the study. The increase in the mechanical properties of the polymer composition with encapsulated particles in comparison with the samples of polymer composition with non-encapsulated particles was revealed. That can indicate the increased adhesion of encapsulated particles to such polymer matrix.

Downloads

Download data is not yet available.

Author Biographies

Maxim P. Danilaev, Kazan National Research Technical University named after A. N. Tupolev – KAI, 10 К. Marx str., Kazan 420111, Republic of Tatarstan, Russian Federation

Dr. Sci. (Tech.), Professor of
Electronics and Quantum Means of Information
Transmission, Head of Interuniversity Interdisciplinary
Laboratory, Kazan National Research Technical
University named after A. N. Tupolev – KAI (Kazan,
Russian Federation).

Nikolay V. Dorogov, Kazan National Research Technical University named after A. N. Tupolev – KAI, 10 К. Marx str., Kazan 420111, Republic of Tatarstan, Russian Federation

Senior Lecturer of Radiofotonics
and Multimedia Technology Department, Kazan
National Research Technical University named after
A. N. Tupolev – KAI, (Kazan, Russian Federation).

Sergey V. Drobushev, Kazan National Research Technical University named after A. N. Tupolev – KAI, 10 К. Marx str., Kazan 420111, Republic of Tatarstan, Russian Federation

Engineer of “Applied
Nanotechnology” center, Kazan National Research
Technical University named after A. N. Tupolev - KAI,
(Kazan, Russian Federation).

Sergey A. Karandashov, Kazan National Research Technical University named after A. N. Tupolev – KAI, 10 К. Marx str., Kazan 420111, Republic of Tatarstan, Russian Federation

Engineer of Interuniversity
Interdisciplinary laboratory, Kazan National Research
Technical University named after A. N. Tupolev - KAI,
(Kazan, Russian Federation).

Mikhail A. Klabukov, Kazan National Research Technical University named after A. N. Tupolev – KAI, 10 К. Marx str., Kazan 420111, Republic of Tatarstan, Russian Federation

Head of the Material Science
and Welding Laboratory, Department of Material
Science, Welding and Industrial Safety, Kazan National
Research Technical University named after A. N.
Tupolev – KAI, (Kazan, Russian Federation).

Vladimir A. Kuklin, Kazan National Research Technical University named after A. N. Tupolev – KAI, 10 К. Marx str., Kazan 420111, Republic of Tatarstan, Russian Federation; Kazan Federal University, 18 Кremlevskay str., Kazan 420018, Republic of Tatarstan, Russian Federation

Cand. Sci. (Phys-Math.), Lead
Engineer, Kazan National Research Technical
University named after A. N. Tupolev – KAI, Kazan
Federal University, Institute of Physics (Kazan, Russian
Federation).

References

Razavi M., Ogunbode E. B., Nyakuma B. B., Razavi M., Yatim J. M., Lawal T. A. Fabrication, characterisation and durability performance of kenaf fibre reinforced epoxy, vinyl and polyester-based polymer composites. Biomass Conversion and Biorefinery. 2021; (in press): 1–16. https://doi.org/10.1007/s13399-021-01832-z

Mohammed M., Chai Y. Y., Doh S. I., Lim K. S. Degradation of glass fiber reinforced polymer (GFRP) material exposed to tropical atmospheric condition. Key Engineering Materials. 2021;879: 265–274. https://doi.org/10.4028/www.scientific.net/kem.879.265

Zhang G., Gong C., Gu J., Katayama Y., Someya T., Gu J. D. Biochemical reactions and mechanisms involved in the biodeterioration of stone world cultural heritage under the tropical climate conditions. International Biodeterioration & Biodegradation. 2019;143(9): 104723. https://doi.org/10.1016/j.ibiod.2019.104723

Omazic A., Oreski G., Halwachs M., … Erceg M. Relation between degradation of polymeric components in crystalline silicon PV module and climatic conditions: A literature review. Solar energy materials and solar cells. 2019;192(4): 123-133. https://doi.org/10.1016/j.solmat.2018.12.027

Oliveira M. S., Luz F. S., Monteiro S. N. Research progress of aging effects on fiber-reinforced polymer composites: A brief review. Characterization of Minerals, Metals, and Materials. 2021;2021: 505-515.https://doi.org/10.1007/978-3-030-65493-1_51

Mulenga T. K., Ude A. U., Vivekanandhan C. Techniques for modelling and optimizing the mechanical properties of natural fiber composites: a review. Fibers. 2021;9(1): 6. https://doi.org/10.3390/fib9010006

Ogbonna V. E., Popoola A. P., Popoola O. M., Adeosun S. O. A review on corrosion, mechanical, and electrical properties of glass fiber-reinforced epoxy composites for high-voltage insulator core rod applications: challenges and recommendations. Polymer Bulletin. 2021;(8): 1-28. https://doi.org/10.1007/s00289-021-03846-z

Murthy N., Wilson S., Sy J. C. Biodegradation of polymers. Polymer Science: A Comprehensive Reference. 2012;9: 547-560. https://doi.org/10.1016/B978-0-444-53349-4.00240-5

Lim B. K. H., Thian E. S. Biodegradation of polymers in managing plastic waste — A review. Science of The Total Environment. 2021;813(3): 1-25. https://doi.org/10.1016/j.scitotenv.2021.151880

Kondratenko Y. A., Golubeva N. K., Ivanova A. G . , … Shilova O.A. Improve mentof the physicomechanical and corrosion-protective properties of coatings based on a cycloaliphatic epoxy matrix. Russian Journal of Applied Chemistry. 2021;94(11): 1489–1498. https://doi.org/10.1134/S1070427221110045

Tang S, Zheng J. Antibacterial activity of Ssilver nanoparticles: structural effects. Advanced healthcare materials. 2018;7(13): 1701503(1-10). https://doi.org/10.1002/adhm.201701503

Akhmadeev A. A., Bogoslov E. A., Danilaev M. P., Klabukov M. A., Kuklin V. A. Influence of the thickness of a polymer shell applied to surfaces of submicron filler particles on the properties of polymer compositions. Mechanics of Composite Materials. 2020;56(2): 241-248. https://doi.org/10.1007/s11029-020-09876-4

Lipatov Ju. S. Physical chemistry of filled polymers*. Moscow: Khimiya Publ.; 1977. 304 p. (In Russ.)

Ahmethanov R. M., Sadritdinov A. R., Zaharov V. P., Shurshina A. S., Kulish E. I Study of viscoelastic characteristics of secondary polymer raw materials in the presence of natural fillers of vegetable origin. Condensed Matter and Interphases. 2020;22(1): 11–17. https://doi.org/10.17308/kcmf.2020.22/2471

Kozlov G. V., Dolbin I. V. Transfer of mechanical stress from polymer matrix to nanofiller in dispersionfilled nanocomposites. Inorganic Materials: Applied Research. 2019;10(1): 226–230. https://doi.org/10.1134/S2075113319010167

Lavrov N. A., Kiemov Sh. N., Kryzhanovskii V. K. Tribotechnical properties of composite materials based on epoxy polymers. Polymer Science, Series D. 2019;12(2): 182–185. https://doi.org/10.1134/S1995421219020096

Bernard A., Chisholm M. H. Synthesis of core–shell (nano) particles involving TiO2, SiO2, Al2O3 and polylactide. Polyhedron. 2012;46(1). 1–7. https://doi.org/10.1016/j.poly.2012.07.017

Pfister A., Zhang G., Zareno J., Horwitz A. F., Fraser C. L Boron polylactide nanoparticles exhibiting fluorescence and phosphorescence in aqueous medium. ACS nano. 2008;2(6): 1252–1258. https://doi.org/10.1021/nn7003525

Chen F., Gao Q., Hong G., Ni J. Synthesis of magnetite core–shell nanoparticles by surfaceinitiated ring-opening polymerization of L-lactide. Journal of Magnetism and Magnetic Materials. 2008;320(13): 1921–1927. https://doi.org/10.1016/j.jmmm.2008.02.132

Pitukmanorom P., Yong T. H., Ying J. Y. Tunable release of proteins with polymer–inorganic nanocomposite microspheres. Advanced Materials. 2008;20(18): 3504-3509. https://doi.org/10.1002/adma.200800930

Lu X., Lv X., Sun Z., Zheng Y. Nanocomposites of poly (L-lactide) and surface-grafted TiO2 nanoparticles: Synthesis and characterization. European Polymer Journal. 2008;44(8): 2476–2481. https://doi.org/10.1016/j.eurpolymj.2008.06.002

Chee S. S., Jawaid M., Sultan M. T. H., Alothman O. Y., Abdullah L. C. Accelerated weathering and soil burial effects on colour, biodegradability and thermal properties of bamboo/kenaf/epoxy hybrid composites. Polymer Testing. 2019;79: 106054. https://doi.org/10.1016/j.polymertesting.2019.106054

Jagadeesh P., Puttegowda M., Mavinkere Rangappa S., Siengchin S. Influence of nanofillers on biodegradable composites: A comprehensive review. Polymer Composites. 2021;42(11): 5691–5711. https://doi.org/10.1002/pc.26291

Hussien S. M. R. H., Sakhabutdinov A., Anfinogentov V., Danilaev M., Kuklin V., Morozov O. Mathematical odel for measuring the concentration of nanoparticles in a liquid during sedimentation. Karbala International Journal of Modern Science. 2021;7(2): 160–167. https://doi.org/10.33640/2405-609X.2973

Danilaev M. P., Drobyshev S. V., Klabukov M. A., Kuklin V. A., Mironova D. A. Formation of a polymer shell of a given thickness on surfaces of submicronic particles. Nanobiotechnology Reports. 2021;16(2): 162–166. https://doi.org/10.1134/S263516762102004X

Bogomolova O. Y., Biktagirova I. R., Danilaev M. P., Klabukov M. A., Polsky Y. E., Pillai S., Tsentsevitsky A. A. Effect of adhesion between submicron filler particles and a polymeric matrix on the structure and mechanical properties of epoxyresin-based compositions. Mechanics of Composite Materials. 2017;53(1): 117–122. https://doi.org/10.1007/s11029-017-9645-0

Danilaev D. P., Danilaev M. P., Dorogov N. V. The capsulation process effectiveness in multiphase gas flows. Scientific and Technical Volga region Bulletin. 2015;(3): 34–37. (In Russ., abstract in Eng.). Available at: https://elibrary.ru/download/elibrary_23930402_24136330.pdf

Pinto D., Bernardo L., Amaro A., Lopes S. Mechanical properties of epoxy nanocomposites using titanium dioxide as reinforcement–a review. Construction and Building Materials. 2015;95: 506–524. https://doi.org/10.1016/j.conbuildmat.2015.07.124

Goyat M. S., Hooda A., Gupta T. K., Kumar K., Halder S., Ghosh P. K., Dehiya B. S. Role of nonfunctionalized oxide nanoparticles on mechanical properties and toughening mechanisms of epoxy nanocomposites. Ceramics International. 2021;47(16): 22316–22344. https://doi.org/10.1016/j.ceramint.2021.05.083

Nampoothiri K. M., Nair N. R., John R. P. An overview of the recent developments in polylactide (PLA) research. Bioresource Technology. 2010;101(22): 8493–8501. https://doi.org/10.1016/j.biortech.2010.05.092

Zhuravlev R. A., Tamova M. Yu., Agafonova E. V. Device for the production of encapsulated products. Patent RF No. 2665487. Publ. 08.30.2018, bul. No. 25. (In Russ.)

Wang C., Sun C. Liu Q. Formation, breakage, and re-growth of quartz flocs generated by non-ionic high molecular weight polyacrylamide. Minerals Engineering. 2020;157: 106546(1-12). https://doi.org/10.1016/j.mineng.2020.106546

Kumar A. P., Depan D., Tomer N. S., Singh R. P. Nanoscale particles for polymer degradation and stabilization–trends and future perspectives. Progress in polymer science. 2009;34(6): 479–515. https://doi.org/10.1016/j.progpolymsci.2009.01.002

Аllsopp D., Seal K., Gaylarde J. Ch. Introduction to biodeterioration. 2nd edn. Cambridge University Press; 2006. p. 252.

Published
2023-02-07
How to Cite
Danilaev, M. P., Dorogov, N. V., Drobushev, S. V., Karandashov, S. A., Klabukov, M. A., & Kuklin, V. A. (2023). Dispersed copper (I) oxide particles encapsulated by polylactide. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 25(1), 27-36. https://doi.org/10.17308/kcmf.2023.25/10943
Section
Original articles