Thermochemical characteristics of the formation of aqueous solutions of imino acids
Abstract
The calorimetry methods are an important source of thermodynamic information in the physicochemistry of solutions of biologically active substances, including amino acids. The goal of the work was to prepare a thermodynamic description of the formation of an aqueous solution of heterocyclic imino acids, proline and hydroxyproline, that have different structures and sizes of the side radical, in a wide range of concentrations, which can be used for a qualitative analysis of changes occurring in their solutions.
Thermochemical measurements of the formation of an aqueous solution of imino acids in the concentration range 1.0·10-3 – 40.0·10-3 mol/kg was performed on a MID-200 differential heat-conducting microcalorimeter at 293 K. The equilibrium moment in the solution formation was determined by the output of the thermokinetic curve to the zero line. The enthalpy of the formation of an aqueous solution of imino acids was calculated by the integration of the time dependence of thermal power.
It is shown that the increase in the equilibrium time, the increase in the maximum heat flow, and the decrease in the rate of change of the heat flow during the dissolution of hydroxyproline is due to the formation of intra and intermolecular bonds in the Hypro structure with the participation of the OH group. The difference in the structure of imino acids is reflected in the sign of the thermal effect and the form of the concentration dependence of the enthalpy of formation of aqueous solutions. The exoeffect of proline dissolution is due to the stabilisation of the water structure influenced by imino acid.
Downloads
References
Abrosimov V. K., Agafonov A. V., Antin E. V., Berezin B. D., Berezin M. B., Vyugin A. I., Ivanov E. V., Kulikov G. S. , Lapshev P. V. , Lomova T. N. , Novoselov N. P., Sashina E. S., Chumakova R. V. Biologically active substances in solutions. Structure, thermodynamics, reactivity*. Moscow: Nauka Publ., 2001. 403 p. (In Russ.)
Biochemical thermodynamics. M. Jones (ed.). Amsterdam, New York: Elsevier; 1988. 408 p.
Lytkin A. I., Chernikov V. V., Krutova O. N., Smirnova D. K. Standard enthalpy of dissolution of crystalline DL – valyl – DL - leucine in water and aqueous solutions of KOH. Russian Journal of Physical Chemistry A. 2019;93: 1699–1702. https://doi.org/10.1134/S0036024419090115
Ryzhkina I. S., Murtazina L. I., Kiseleva Yu. V., Konovalov A. I. Properties of supramolecular nanoassociates formed in aqueous solutions of biologically active compounds in low or ultra-low concentrations. Doklady Physical Chemistry. 2009;428(2): 196–200. https://doi.org/10.1134/S0012501609100029
Badelin V. G., Smirnov V. I., Mezhevoy I. N. Effect of the molecular structure on the enthalpies of hydration of amino acids and oligopeptides. Russian Journal of Physical Chemistry A. 2002;76(7): 1168–1171. Available at: https://w w w.elibrar y.ru/item.asp?id=44546289
Bekeneva A. V., Kustov A. V., Korolev V. P. The enthalpy of solution of phenylalanine in water. Journal of Physical Chemistry. 2004; 78 (11):1927. Russian Journal of Physical Chemistry A. 2004;78(11): 1697–1700. Available at: https://www.elibrary.ru/item.asp?id=13461990
Kotova D.L., Beilina D.S., Krysanova T.A. Thermochemical characteristics of the dissolution of histidine. Russian Journal of Physical Chemistry A. 2004;78(3): 375–377. Available at: https://www.elibrary.ru/item.asp?id=13462463
Gurskaya G.V. Structure of amino acids*. Moscow: Nauka Publ.; 1966. 159 p. (In Russ.)
Amelin V. N., Leikin Yu. A. Calorimetry of ion processes*. Voronezh: VSU Publ.; 1991. 102 p. (In Russ.)
Perelygin I. S., Kimtis L. L., Chizhik V. I., … Krestov G.A. Experimental methods of solution chemistry. pectroscopy and calorimetry. Moscow: Nauka Publ.; 1995. 380 p. (In Russ.)
Doerffel K. Statistik in der analytischen Chemie. Leipzig: Dt. Verl. für Grundstoffindustrie; 1984. 256 p.
Mishchenko K. P., Poltoratsky M. L. Issues of thermodynamics and structure of aqueous solutions and non-aqueous solutions of electrolytes*. Leningrad: Khimiya Publ.; 1976. 327 p. (In Russ.)
Parker V. B. Tables of chemical and thermodynamic properties. Wach.: MS Depart of Commerce Nat.. Bur. of Stand. NSRDS – NBS 2. 1982. p. 319.
Kotova D. L., Rozhnova O. I., Selemenev V. F., Peregudov Yu. S. Thermochemical characteristics of dissolution of cysteine in water. Russian Journal of Physical Chemistry A. 2000;74(12): 2071–2072. Available at: https://www.elibrar y.ru/item.asp?id=13356491
Reichard C. Solvents and solvent effects in organic chemistry. Weinheim: VCH, Cop.; 1988. 534 p.
Wilson K., Walker J. Principles and techniques of biochemistry and molecular biology. Cambridge University Press; 2010. https://doi.org/10.1017/CBO9780511841477
Belousov V. P., Panov M. Yu. Thermodynamics of dilute solutions*. Leningrad: Khimiya Publ.; 1982. 240 p. (In Russ.)
Vasiliev A. V., Grinenko E. V., Shchukin A. O., Fedulina T. G. Infrared spectroscopy of organic and natural compounds: textbook.* St. Petersburg: SPbGLTA Publ.; 2007. 54 p. (In Russ.)
Hamburg Yu. D. Chemical thermodynamics: textbook*. Moscow: Laboratoriya znanii. Publ.; 2016. 237 р. (In Russ.)
Copyright (c) 2023 Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.