Formation during glycine-nitrate combustion and magnetic properties of YFe1–xNixO3 nanoparticles

Keywords: Nanocrystals, Yttrium orthoferrite, Nickel, Doping, Glycine-nitrate combustion

Abstract

     The synthesis of FeO3 and YFe1–xNixO3 (x = 0.1; 0.15; 0.2; 0.3; 0.5) nanocrystals was performed under the conditions of a self-propagating wave of glycine-nitrate combustion and their characterization and determination of the effect of Ni2+ doping of yttrium ferrite on the magnetic properties of nanopowders.
     The technology for the synthesis of yttrium orthoferrite nanoparticles (with and without doping with Ni2+ ions) by the glycine-nitrate combustion method at a ratio of G/N = 1 and 1.5 without adding a gelling agent to the reaction mixture and using ethylene glycol/glycerol is described. For the characterization of nanopowders based on YFeO3, the following were determined: phase composition and crystal structure (X-ray diffraction (XRD) method); size and structure of nanocrystal particles (transmission electron microscopy (TEM)); elemental composition of the samples (local X-ray spectral microanalysis (LXSMA)); magnetic characteristics (field dependences of specific magnetization).
      Thermal annealing of the synthesized samples at 800°C for 60 min led to the formation of the о-YFeO3 main phase. Undoped samples of yttrium orthoferrite were characterized by a particle diameter in the range of 5-185 nm, depending on the gelling agent used. YFe1-xNixO3 particles had a predominantly round shape with a size of 24 to 31 nm; the non-monotonic dependence of the average particle diameter on the dopant content was revealed: as the amount of dopant added increased, the average crystallite size tended to decrease. Nanopowders of undoped yttrium orthoferrite exhibit antiferromagnetic behaviour of magnetic susceptibility with temperature. The change in the magnetic properties of the nickel-doped YFeO3 nanocrystalline powders was due to the incorporation of Ni2+ into the Fe3+position, which led to the formation of a material with more pronounced soft magnetic properties at a substitution degree of 0.1. Samples with high degrees of substitution (x = 0.15 and 0.3) were also characterized by paramagnetic behaviour at temperatures above 100 K.

Downloads

Download data is not yet available.

Author Biographies

Evgenia I. Lisunova, Voronezh State University, 1 Universitetskaya pl., Voronezh, 394018, Russian Federation

PhD student of the Department
of Materials Science and the Industry of Nanosystems,
Voronezh State University (Voronezh, Russian
Federation).

Nikolai S. Perov, Lomonosov Moscow State University 1, building 2 Leninskie Gory, Moscow 119991, Russian Federation

Dr. Sci. (Phys.–Math.), Professor,
Head of the Department of Magnetism, Faculty of
Physics, Lomonosov Moscow State University (Moscow,
Russian Federation).

Valentina O. Mittova, Teaching University Geomedi 4 st. King Solomon II str. 0114, Tbilisi, Georgia

PhD, Professor of the
Scientific-Research Institute of Experimental and
Clinical Medicine, Laboratory of Molecular Medicine,
Teaching University Geomedi (Tbilisi, Georgia).

Boris V. Sladkopevtsev, Voronezh State University, 1 Universitetskaya pl., Voronezh, 394018, Russian Federation

Cand. Sci. (Chem.), Associate
Professor of the Department of Materials Science and
Nanosystem Technologies, Voronezh State University
(Voronezh, Russian Federation).

Vuong Bui Xuan, Faculty of Natural Sciences Education, Saigon University, 273 An Duong Vuong St., Ward 3, District 5, Ho Chi Minh City, Vietnam

PhD in Chemistry, Lecturer of the
Faculty of Natural Sciences Education, Saigon
University (Ho Chi Minh City, Vietnam).

Tien Nguyen Anh, Faculty of Chemistry, Ho Chi Minh City University of Education, Ho Chi Minh City 700000, Vietnam

PhD in Chemistry, Chief of
Inorganic Chemistry Department, Ho Chi Minh City
University of Education (Ho Chi Minh City, Vietnam).

Yulia A. Alekhina, Lomonosov Moscow State University 1, building 2 Leninskie Gory, Moscow 119991, Russian Federation

Researcher of the Department
of Magnetism, Faculty of Physics, Lomonosov Moscow
State University n (Moscow, Russian Federation).

Viktor F. Kostryukov, Voronezh State University, 1 Universitetskaya pl., Voronezh, 394018, Russian Federation

Dr. Sci. (Chem.), Associate
Professor, Associate Professor of the Department of
Materials Science and the Industry of Nanosystems,
Voronezh State University (Voronezh, Russian
Federation).

Irina Ya. Mittova, Voronezh State University, 1 Universitetskaya pl., Voronezh, 394018, Russian Federation

Dr. Sci. (Chem.), Professor of the
Department of Materials Science and the Industry of
Nanosystems, Voronezh State University (Voronezh,
Russian Federation).

References

Saukhimov A. A., Hobosyan M. A., Dannangoda G. C., Zhumabekova N. N., Almanov G. A., Kumekov S. E., Martirosyan K. S. Solution-combustion synthesis and magnetodielectric properties of nanostructured rare earth ferrites. International Journal of Self-Propagating High-Temperature Synthesis. 2015;24(2): 63–71. https://doi.org/10.3103/S1061386215020065

Popkov V. I., Almjasheva O. V., Gusarov V. V. The investigation of the structure control possibility of nanocrystalline yttrium orthoferrite in its synthesis from amorphous powders. Russian Journal of Applied Chemistry. 2014;87(10): 1417–1421. https://doi.org/10.1134/S1070427214100048

Nguyen A. T., Nguyen V. Y., Mittova I. Ya., Mittova V. O., Viryutina E. L., Hoang C. Ch. T., Nguyen Tr. L. T., Bui X. V., Do T. H. Synthesis and magnetic properties of PrFeO3 nanopowders by the co-precipitation method using ethanol. Nanosystems: Physics, Chemistry, Mathematics. 2020;11(4): 468–473. https://doi.org/10.17586/2220-8054-2020-11-4-468-473

Nguyen A. T., Phan Ph. H. Nh., Mittova I. Ya., Knurova M. V., Mittova V. O. The characterization of nanosized ZnFe2O4 material prepared by coprecipitation. Nanosystems: Physics, Chemistry, Mathematics.2016;7(3): 459–463. https://doi.org/10.17586/2220-8054-2016-7-3-459-463 5. Sherstyuk D. P., Starikov A. Yu., Zhivulin V. E.,

Zherebtsov D. A., Gudkova S. A., Perov N. S., Alekhina Yu. A., Astapovich K. A., Vinnik D. A., Trukhanov A. V. Effect of Co content on magnetic features and SPIN states in Ni – Zn spinel ferrites.Ceramics International. 2021;47(9): 12163–12169. https://doi.org/10.1016/j.ceramint.2021.01.063

Serrao C. R., Sahu J. R., Ramesha K., Rao C. N. R. Magnetoelectric effect in rare earth ferrites, LnFe2O4. Journal of Applied Physics. 2008;104(1): 16102. https://doi.org/10.1063/1.2946455

Xu C., Yang Y., Wang S., Duan W., Gu B., Bellaiche L. Anomalous properties of hexagonal rareearth ferrites from first principles. Physical Review B. 2014; 89: 205122. https://doi.org/10.1103/PhysRevB.89.205122

Kanhere P., Chen Z. A review on visible light active perovskite-based photocatalysts. Molecules. 2014;19: 19995–20022. https://doi.org/10.3390/molecules191219995

Ahmad T., Lone I. H., Ansari S. G., Ahmed J., Ahamad T., Alshehri S. M. Multifunctional properties and applications of yttrium ferrite nanoparticles prepared by citrate precursor route. Materials and Design. 2017;126: 331–338. https://doi.org/10.1016/j.matdes.2017.04.034

Jabbarzare S., Abdellahi M., Ghayour H., Chami A., Hejazian S. Mechanochemically assisted synthesis of yttrium ferrite ceramic and its visible light photocatalytic and magnetic properties. Journal of Alloys and Compounds. 2016;688: 1125–1130. https://doi.org/10.1016/j.jallcom.2016.07.123

Suthar L., Bhadala F., Roy M. Structural, electrical, thermal and optical properties of YFeO3, prepared by SSR and sol – gel route: a comparative study. Applied Physics A. 2019;125: 452. https://doi.org/10.1007/s00339-019-2743-1

Nguyen A. T., Pham V. N. T., Nguyen T. T. L., Mittova V. O., Vo Q. M., Berezhnaya M. V., Mittova I. Ya., Do Tr. H., Chau H. D. Crystal structure and magnetic properties of perovskite YFe1xMnxO3 nanopowders synthesized by co-precipitation method. Solid State Sciences. 2019;96: 105922. https://doi.org/10.1016/j.solidstatesciences.2019.06.011

Popkov V. I., Almjasheva O. V. Formation mechanism of YFeO3 nanoparticles under the hydrothermal ondition. Nanosystems: Physics, Chemistry, Mathematics. 2014;5(5): 703–708. Available at: https://www.elibrary.ru/item.asp?id=22415667

Berezhnaya M. V., Al’myasheva O. V., Mittova V. O., Nguyen A. T., Mittova I. Ya. Sol-gel synthesis and properties of Y1–xBaxFeO3 nanocrystals. Russian Journal of General Chemistry. 2018;88(4): 626-631. https://doi.org/10.1134/S1070363218040035

Popkov V. I., Almjasheva O. V., Semenova A. S., Kellerman D. G., Nevedomskiy V. N., Gusarov V. V. Magnetic properties of YFeO3 nanocrystals obtained by different soft-chemical methods. Journal of Materials Science: Materials in Electronics. 2017;28; 7163–7170. https://doi.org/10.1007/s10854-017-6676-1

Shobana M. K., Kwon H., Choe H. Structural studies on the yttrium-doped cobalt ferrite powders synthesized by sol-gel combustion method. Journal of Magnetism and Magnetic Materials. 2012;324: 2245–2248. https://doi.org/10.1016/j.jmmm.2012.02.110

Nguyen T. A., Pham V. N. T., Le H. T., Chau D. H., Mittova V. O., Nguyen L. T. Tr., Dinh D. A., Nhan Hao T. V., Mittova I. Ya. Crystal structure and magnetic properties of LaFe1xNixO3 nanomaterials prepared via a simple co-precipitation method. Ceramics International. 2019;45: 21768–21772. https://doi.org/10.1016/j.ceramint.2019.07.178

Lima E., De Biasi E., Mansilla M. V., Saleta M. E., Granada M., Troiani H. E., Rechenberg H. R., Zysler R.D. Heat generation in agglomerated ferrite nanoparticles in an alternating magnetic field. Journal of Physics D: Applied Physics. 2012;46: 045002. https://doi.org/10.1088/0022-3727/46/4/045002

Bachina A., Ivanov V. A., Popkov V. I. Peculiarities of LaFeO3 nanocrystals formation via glycine-nitrate combustion. Nanosystems: Physics, Chemistry, Mathematics. 2017;8(5): 647–653. https://doi.org/10.17586/2220-8054-2017-8-5-647-653

Martinson K. D., Kondrashkova, I. S., Popkov V. I. Synthesis of EuFeO3 nanocrystals by glycine-nitrate combustion method. Russian Journal of Applied Chemistry. 2017;90(8): 1214–1218. https://doi.org/10.1134/S1070427217080031

Popkov V. I., Almjasheva O. V., Nevedomskyi V. N., Panchuk V. V., Semenov V. G., Gusarov V. V. Effect of spatial constraints on the phase evolution of YFeO3-based nanopowders under heat treatment of glycinenitrate combustion products. Ceramics International.2018;44: 20906–20912. https://doi.org/10.1016/j.ceramint.2018.08.097

Lebedev L. A., Tenevich M. I., Popkov V. I. The effect of solution-combustion mode on the structure, morphology, and size-sensitive photocatalytic performance of MgFe2O4 nanopowders. Condensed Matter and Interphases. 2022;24(4): 496–503. https://doi.org/10.17308/kcmf.2022.24/10645

Popkov V. I., Almjasheva O. V., Nevedomskiy V. N., Sokolov V. V., Gusarov V. V. Crystallization behavior and morphological features of YFeO3 nanocrystallites obtained by glycine-nitrate combustion. Nanosystems: Physics, Chemistry, Mathematics. 2015;6(6): 866–874. https://doi.org/10.17586/2220-8054-2015-6-6-866-874

Popkov V. I., Almyasheva O. V. Yttrium orthoferrite nanopowders formation under glycinenitrate combustion conditions. Journal of Applied Chemistry. 2014;87(2): 167–171. https://doi.org/10.1134/S1070427214020074 25. Nguyen A. T., Chau H. Nguyen A. T., Chau H. O., Huong D. T., Mittova I. Ya. Structural and magnetic properties of YFe1-xCoxO3 (0.1https://doi.org/10.17586/2220-8054-2018-9-3-424-429

Nguyen A. T., Mittova I. Ya., Solodukhin D. O., Al’myasheva O. V., Mittova V. O., Demidova S. Yu. Solgel formation and properties of nanocrystals of solid solutions Y1xCaxFeO3. Journal of Inorganic Chemistry. 2014;59(2): 40–45. https://doi.org/10.7868/S0044457X14020159

Pomiro F., Gil D. M., Nassif V., Paesano A., Gomez M. I., Guimpel J., Sanchez R. D., Carbonio R. E. Weak ferromagnetism and superparamagnetic clusters coexistence in YFe1xcoxO3 (0 ≤ x ≤ 1) perovskites. Materials Research Bulletin. 2017;94: 472–482. https://doi.org/10.1016/j.materresbull.2017.06.045

Tomina E. V., Kurkin N. A., Maltsev S. A. Microwave synthesis of yttrium orthoferrite and doping with nickel. Condensed Matter and Interphases. 2019;21(2): 306–312. https://doi.org/10.17308/kcmf.2019.21/768

Tomina E. V., Darinsky B. M., Mittova I. Ya., Churkin V. D., Boikov N. I., Ivanova O. B. Microwaveassisted synthesis of YСохFe1–хO3 nanocrystals. Inorganic materials. 2019;55(4): 390–394. https://doi.org/10.1134/S0002337X19040158

Shannon R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A. 1976; A32(5): 751–767. https://doi.org/10.1107/S0567739476001551

Nguyen A. T., Pham V., Chau D. H., Mittova V. O., Mittova I. Ya., Kopeychenko E. Nguyen A. T., Pham V., Chau D. X., Nguyen A.T. P. Effect of Ni substitution on phase transition, crystal structure and magnetic properties of nanostructured YFeO3 perovskite. Journal of Molecular Structure. 2020;1215: 12829. https://doi.org/10.1016/j.molstruc.2020.128293

Berezhnaya M. V., Mittova, I. Ya., Perov N. S., Al’myasheva O. V., Nguyen A. T., Mittova V. O., Bessalova V. V., Viryutina E. L. Production of zincdoped yttrium ferrite nanopowders by the sol-gel method. Russian Journal of Inorganic Chemistry. 2018;63(6): 742–746. https://doi.org/10.7868/S0044457X18060077

Published
2023-03-09
How to Cite
Lisunova, E. I., Perov, N. S., Mittova, V. O., Sladkopevtsev, B. V., Xuan, V. B., Anh, T. N., Alekhina, Y. A., Kostryukov, V. F., & Mittova, I. Y. (2023). Formation during glycine-nitrate combustion and magnetic properties of YFe1–xNixO3 nanoparticles. Condensed Matter and Interphases, 25(1), 61-71. https://doi.org/10.17308/kcmf.2023.25/10975
Section
Original articles