A study of the local atomic structure the environment of zinc ions of different concentrations during their interaction with the arachidic acid Langmuir monolayer

  • Victoria Yu. Lysenko Southern Federal University 105/42 Bolshaya Sadovaya st., Rostov-on-Don 344006, Russian Federation https://orcid.org/0000-0002-0538-7772
  • Maria A. Kremennaya Southern Federal University 105/42 Bolshaya Sadovaya st., Rostov-on-Don 344006, Russian Federation https://orcid.org/0000-0002-0894-5733
  • Sergey N. Yakunin National Research Centre “Kurchatov Institute” 1 Academician Kurchatova pl., Moscow 123182, Russian Federation
  • Alexander V. Rogachev National Research Centre “Kurchatov Institute” 1 Academician Kurchatova pl., Moscow 123182, Russian Federation https://orcid.org/0000-0001-6026-1534
  • Galina E. Yalovega Southern Federal University 105/42 Bolshaya Sadovaya st., Rostov-on-Don 344006, Russian Federation https://orcid.org/0000-0002-0157-6955
Keywords: arachidic acid, X-ray absorption spectroscopy, total external reflection, lipid layer, Langmuir bath, subphase, thin films

Abstract

    Vital cellular processes depend on the controlled transport of metal ions across biological membranes. A biological membrane is a complex system consisting of lipids and proteins, that is why simplified systems, in particular monomolecular layers, are used to model it.
    This work presents the results of a study of the interaction of zinc ions from the aqueous subphase with the Langmuir monolayer of arachidic acid. The study was carried out for the first time and used total external reflection X-ray absorption spectroscopy. It considers the influence of the concentration of a ZnCl2 aqueous subphase solution on the local environment of zinc ions when interacting with the lipid monolayer immediately after its formation.
     The theoretical analysis of experimental XANES spectra showed that one of the interaction ways of arachidic acid molecules with zinc ions immediately after the monolayer formation is an intramolecular interaction with the formation of spodium bonds between the zinc cation and the OH carboxyl group of arachidic acid

Downloads

Download data is not yet available.

Author Biographies

Victoria Yu. Lysenko, Southern Federal University 105/42 Bolshaya Sadovaya st., Rostov-on-Don 344006, Russian Federation

2nd year master student of the Faculty of Physics, Southern Federal University (Rostov-on-Don, Russian Federation)

Maria A. Kremennaya, Southern Federal University 105/42 Bolshaya Sadovaya st., Rostov-on-Don 344006, Russian Federation

Cand. Sci. (Phys.–Math.), Senior Lecturer, Faculty of Physics, Southern Federal University (Rostov-on-Don, Russian Federation)

Sergey N. Yakunin, National Research Centre “Kurchatov Institute” 1 Academician Kurchatova pl., Moscow 123182, Russian Federation

Cand. Sci. (Phys.–Math.), First Deputy Head of the Kurchatov Complex for Synchrotron-Neutron Research of the National Research Center “Kurchatov Institute” (Moscow, Russian Federation)

Alexander V. Rogachev, National Research Centre “Kurchatov Institute” 1 Academician Kurchatova pl., Moscow 123182, Russian Federation

Researcher, National Research Center “Kurchatov Institute” (Moscow, Russian Federation).

Galina E. Yalovega, Southern Federal University 105/42 Bolshaya Sadovaya st., Rostov-on-Don 344006, Russian Federation

Dr. Sci. (Phys.–Math.), Head of the Department of Physics of Nanosystems and Spectroscopy, Faculty of Physics, Southern Federal University (Rostov-on-Don, Russian Federation)

References

Watson H. Biological membranes. Essays in Biochemistry. 2015;59: 43–69. https://doi.org/10.1042/bse0590043

Mukhomedzyanova S., Pivovarov Y., Bogdanova O., Dmitrieva L., Shulunov A. The lipids of biological membranes (Literature review). Acta Biomedica Scientifica. 2017;2(5(1)): 43–49. https://doi.org/10.12737/article_59e8bcd3d6fcb1.49315019

Wiśniewska-Becker A., Gruszecki W. I. 2 – Biomembrane models. In: Drug – biomembrane interaction studies. Woodhead Publishing. 2013: 47–59. https://doi.org/10.1533/9781908818348.47

Sandstead H. H. Handbook on the Toxicology of Metals, 4th ed. Elsevier. 2014: 1369–1386.

Pipan-Tkalec Z., Drobne D., Jemec A., Romih T., Zidar P., Bele M. Zinc bioaccumulation in a terrestrial invertebrate fed a diet treated with particulate ZnO or ZnCl2 solution. Toxicology. 2010;269(2-3): 198–203. https://doi.org/10.1016/j.tox.2009.08.004

Li S., Du L., Wei Z., Wang W. Aqueous-phase aerosols on the air-water interface: Response of fatty acid Langmuir monolayers to atmospheric inorganic ions. Science of the Total Environment. 2017;580: 1155–1161. https://doi.org/10.1016/j.scitotenv. 2016.12.072

Bokhoven J. A., Lamberti C. (eds.). X-Ray absorption and X-Ray emission spectroscopy: Theory and Applications. John Wiley & Sons. 2016. https://doi.org/10.1002/9781118844243

Shmatko V. A., Mysoedova T. N., Mikhailova T. A., Yalovega G. E. Features of the electronic structure and chemical bonds of polyaniline-based composites obtained by acid-free synthesis. Condensed Matter and Interphases. 2019;4(4): 567–578. https://doi.org/10.17308/kcmf.2019.21/2367

Konovalov O. V., Novikova N. N., Kovalchuk M. V., … Yakunin S. N. XANES measurements for studies of adsorbed protein layers at liquid interfaces. Materials. 2020;13(20): 4635. https://doi.org/10.3390/ma13204635

Novikova N. N., Yakunin S. N., Koval’chuk M. V., … Topunov A. F. Possibilities of X-ray absorption spectroscopy in the total external reflection geometry for studying protein films on liquids. Crystallography Reports. 2019;64(6): 952–957. https://doi.org/10.1134/S1063774519060130

Joly Y. X-ray absorption near-edge structure calculations beyond the muffin-tin approximation. Physical Review. 2001;63: 125120. https://doi.org/10.1103/physrevb.63.125120

Sujak A., Gagos M., Serra M. D., Gruszecki W. I. Organization of two-component monomolecular layers formed with dipalmitoylphosphatidylcholine and the carotenoid pigment, canthaxanthin. Molecular Membrane Biology. 2007;24(5-6): 431–41. https://doi.org/10.1080/09687860701243899

Hereć M., Gagoś M., Kulma M., Kwiatkowska K., Sobota A., Gruszecki W. I. Secondary structure and orientation of the pore-forming toxin lysenin in a sphingomyelin-containing membrane. Biochim Biophys Acta. 2008;1778(4): 872-9. https://doi.org/10.1016/j.bbamem.2007.12.004

Alloteau F., Valbi V., Majérus O., Biron I., Lehuede P., Caurant D., Seyeux A. Study of a surface treatment based on zinc salts to protect glasses from atmospheric alteration: Mechanisms and application to ancient glass objects in museum. In: Glass Atmospheric Alteration: Cultural Heritage, Industrial and Nuclear Glasses. Paris (France): Hermann edition, 2019. pp. 192–202.

Silber H. B., Simon D., Gaizer F. Octahedral-tetrahedral geometry changes for zinc(II) in the presence of chloride ions. Inorganic Chemistry. 1984;23(18): 2844–2848. https://doi.org/10.1021/ic00186a026

Parchment O. G., Vincent M. A., Hillier I. H. Speciation in aqueous zinc chloride. An ab initio hybrid microsolvation/continuum approach. The Journal of Physical Chemistry A. 1996;100(23): 9689–9693. https://doi.org/10.1021/jp960123z

Karmakar M., Frontera A., Chattopadhyay S., Mooibroek T., Bauzá A. Intramolecular spodium bonds in Zn(II) complexes: insights from theory and experiment. International Journal of Molecular Sciences. 2020;21(19): 7091. https://doi.org/10.3390/ijms21197091

Kremennaya M. A., Lysenko V. Y., Novikova N. N., Yakunin S. N., Rogachev A. V., Yalovega G. E. X-ray spectral diagnostics of the local environment of zinc in the arachidic acid layers. Journal of Physics: Conference Series. 2021;2103: 012171. https://doi.org/10.1088/1742-6596/2103/1/012171

Published
2023-07-07
How to Cite
Lysenko, V. Y., Kremennaya, M. A., Yakunin, S. N., Rogachev, A. V., & Yalovega, G. E. (2023). A study of the local atomic structure the environment of zinc ions of different concentrations during their interaction with the arachidic acid Langmuir monolayer. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 25(3), 367-372. https://doi.org/10.17308/kcmf.2023.25/11260
Section
Original articles