Semi-polar GaN(11-22) on nano-structured Si(113): a structure for reducing thermal stresses

  • Vasily N. Bessolov Ioffe Physical-Technical Institute of the Russian Academy of Sciences, 26 Politekhnicheskaya st., St. Petersburg 194021, Russian Federation https://orcid.org/0000-0001-7863-9494
  • Elena V. Konenkova Ioffe Physical-Technical Institute of the Russian Academy of Sciences, 26 Politekhnicheskaya st., St. Petersburg 194021, Russian Federation https://orcid.org/0000-0002-5671-5422
  • Tatiana A. Orlova Ioffe Physical-Technical Institute of the Russian Academy of Sciences, 26 Politekhnicheskaya st., St. Petersburg 194021, Russian Federation https://orcid.org/0009-0007-8234-127X
  • Sergey N. Rodin Ioffe Physical-Technical Institute of the Russian Academy of Sciences, 26 Politekhnicheskaya st., St. Petersburg 194021, Russian Federation https://orcid.org/0000-0003-2236-8642
Keywords: Semi-polar gallium nitride, Nano-structured silicon, Elastic and plastic structure deformation

Abstract

        The article reports the growth of semi-polar GaN(11-22) layers using epitaxy from metal organic compounds on a nanostructured NP-Si(113) substrate. It was shown that upon the emergence of an island layer, elastic deformed structures of GaN(11-22)/NP-Si(113) form a nano-meter compliant silicon layer on a substrate while elastic stresses conditioned by the difference of temperature coefficients of GaN and Si in such a structure decrease

Downloads

Download data is not yet available.

Author Biographies

Vasily N. Bessolov, Ioffe Physical-Technical Institute of the Russian Academy of Sciences, 26 Politekhnicheskaya st., St. Petersburg 194021, Russian Federation

Cand. Sci. (Phys.–Math.), Senior
Researcher, Ioffe Physical-Technical Institute of the
Russian Academy of Sciences (St. Petersburg, Russian
Federation)

Elena V. Konenkova, Ioffe Physical-Technical Institute of the Russian Academy of Sciences, 26 Politekhnicheskaya st., St. Petersburg 194021, Russian Federation

Cand. Sci. (Phys.–Math.),
Senior Researcher, Ioffe Physical-Technical Institute
of the Russian Academy of Sciences (St. Petersburg,
Russian Federation)

Tatiana A. Orlova, Ioffe Physical-Technical Institute of the Russian Academy of Sciences, 26 Politekhnicheskaya st., St. Petersburg 194021, Russian Federation

Cand. Sci. (Phys.–Math.),
Researcher, Ioffe Physical-Technical Institute of the
Russian Academy of Sciences (St. Petersburg, Russian
Federation)

Sergey N. Rodin, Ioffe Physical-Technical Institute of the Russian Academy of Sciences, 26 Politekhnicheskaya st., St. Petersburg 194021, Russian Federation

Researcher, Ioffe Physical-
Technical Institute of the Russian Academy of Sciences
(St. Petersburg, Russian Federation)

References

Dadgar A. Sixteen years GaN on Si. Physica Status Solidi (b). 2015;252(5): 1063–1068. https://doi.org/10.1002/pssb.201451656

Tanaka A., Choi W., Chen R., Dayeh Sh. A. Si complies with GaN to overcome thermal mismatches for the heteroepitaxy of thick GaN on Si. Advanced Materials. 2017;29: 1702557. https://doi.org/10.1002/adma.201702557

Tanikawa T., Hikosaka T., Honda Y., Yamaguchi M., Sawaki N. Growth of semi-polar (11-22) GaN on a (113) Si substrate by selective MOVPE. Physica Status Solidi (c). 2008;5: 2966–2968. https://doi.org/10.1002/pssc.200779236

Bai J., Yu X., Gong Y., Hou Y. N., Zhang Y., Wang T. Growth and characterization of semi-polar (11-22) GaN on patterned (113) Si substrates. Semiconductor Science and Technology. 2015;30: 065012. https://doi.org/10.1088/0268-1242/30/6/065012

Li H., Zhang H., Song J., Li P., Nakamura Sh., DenBaars S. P. Toward heteroepitaxially grown semipolar GaN laser diodes under electrically injected continuous-wave mode: From materials to lasers. Applied Physics Reviews. 2020;7: 041318. https://doi.org/10.1063/5.0024236

Wang T. Topical review: Development of overgrown semi-polar GaN for high efficiency green/ yellow emission. Semiconductor Science Technology. 2016;31: 93003. https://doi.org/10.1088/0268-1242/31/9/093003

Ishikawa H., Shimanaka K., Tokura F., Hayashi Y., Hara Y., Nakanishi M. MOCVD growth of GaN on porous silicon substrates. Journal of Crystal Growth. 2008;310: 4900–4903. https://doi.org/10.1016/j.jcrysgro.2008.08.030

Lo Y. H. New approach to grow pseudomorphic structures over the critical thickness. Applied Physics Letters. 1991;59(18): 2311-2313. https://doi.org/10.1063/1.106053

Wang K., Song Y., Zhang Y., Zhang Y., Cheng Z. Quality improvement of GaN epi-layers grown with a strain-releasing scheme on suspended ultrathin Si nanoflm substrate. Nanoscale Research Letters. 2022;17(1): 99. https://doi.org/10.1186/s11671-022-03732-1

Wang X., Wu A., Chen J., Wu Y., Zhu J., Yang H. Study of GaN growth on ultra-thin Si membranes. Solid State Electron. 2008;52(6): 986–989. https://doi.org/10.1016/j.sse.2008.01.026

Smirnov V. K., Kibalov D. S., Orlov O. M., Graboshnikov V. V. Technology for nanoperiodic doping of a metal–oxide–semiconductor field-effect transistor channel using a self-forming wave-ordered structure. Nanotechnology. 2003;14(7): 709–715. https://doi.org/10.1088/0957-4484/14/7/304

Bessolov V. N., Kompan M. E., Konenkova E. V., Rodin S. N. Deformation of semipolar and polar gallium nitride synthesized on a silicon substrate. Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya. 2022;86(7): 981–984. (In Russ., Abstract in Eng.). https://doi.org/10.31857/S0367676522070109

Kim Ch., Robinson I. K., Myoung J., Shim K., Yoo M. C., Kim K. Critical thickness of GaN thin films on sapphire (0001). Applied Physics Letters. 1996;69: 2358–2360. https://doi.org/10.1063/1.117524

Freund L. B., Floro J. A., Chason E. Extensions of the Stoney formula for substrate curvature to configurations with thin substrates or large deformations. Applied Physics Letters. 1999;74: 1987–1989. https://doi.org/10.1063/1.123722

Krost A., Dadgar A., Strassburger G., Clos R. GaN-based epitaxy on silicon: stress measurements. Physica Status Solidi (a). 2003;200(1): 26–35. https://doi.org/10.1002/pssa.200303428

Katona M., Speck J. S., Denbaars S. P. Effect of the nucleation layer on stress during cantilever epitaxy of GaN on Si (111). Physica Status Solidi (a). 2002;194(2): 550–553. https://doi.org/10.1002/1521-396x(200212)194:2<550::aid-pssa550>3.0.co;2-r

Wang K., Reeber R.R. Thermal expansion of GaN and AlN. Materials Research Society Symposia Proceedings. 1998;482: 863–868. https://doi.org/10.1557/PROC-482-863

Tanaka A., Choi W., Chen R., Dayeh Sh. A. Si complies with GaN to overcome thermal mismatches for the heteroepitaxy of thick GaN on Si. Advanced Materials. 2017;29(38): 1702557. https://doi.org/10.1002/adma.201702557

Published
2023-10-12
How to Cite
Bessolov, V. N., Konenkova, E. V., Orlova, T. A., & Rodin, S. N. (2023). Semi-polar GaN(11-22) on nano-structured Si(113): a structure for reducing thermal stresses. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 25(4), 514-519. https://doi.org/10.17308/kcmf.2023.25/11477
Section
Original articles