Полуполярный GaN(11-22) на наноструктурированном Si(113): структура для снижения термических напряжений
Аннотация
Сообщается о росте полуполярных GaN(11-22) слоев методом эпитаксии из металлоорганических соединений на нано-структурированной подложке NP-Si(113). Показано, что упругие деформированные структуры GaN(11-22)/NP-Si(113) при зарождении островкового слоя формируют нано-метровый “податливый” слой кремния на подложке, а упругие напряжения, обусловленные различием температурных коэффициентов GaN и Si в такой структуре, уменьшаются
Скачивания
Литература
Dadgar A. Sixteen years GaN on Si. Physica Status Solidi (b). 2015;252(5): 1063–1068. https://doi.org/10.1002/pssb.201451656
Tanaka A., Choi W., Chen R., Dayeh Sh. A. Si complies with GaN to overcome thermal mismatches for the heteroepitaxy of thick GaN on Si. Advanced Materials. 2017;29: 1702557. https://doi.org/10.1002/adma.201702557
Tanikawa T., Hikosaka T., Honda Y., Yamaguchi M., Sawaki N. Growth of semi-polar (11-22) GaN on a (113) Si substrate by selective MOVPE. Physica Status Solidi (c). 2008;5: 2966–2968. https://doi.org/10.1002/pssc.200779236
Bai J., Yu X., Gong Y., Hou Y. N., Zhang Y., Wang T. Growth and characterization of semi-polar (11-22) GaN on patterned (113) Si substrates. Semiconductor Science and Technology. 2015;30: 065012. https://doi.org/10.1088/0268-1242/30/6/065012
Li H., Zhang H., Song J., Li P., Nakamura Sh., DenBaars S. P. Toward heteroepitaxially grown semipolar GaN laser diodes under electrically injected continuous-wave mode: From materials to lasers. Applied Physics Reviews. 2020;7: 041318. https://doi.org/10.1063/5.0024236
Wang T. Topical review: Development of overgrown semi-polar GaN for high efficiency green/ yellow emission. Semiconductor Science Technology. 2016;31: 93003. https://doi.org/10.1088/0268-1242/31/9/093003
Ishikawa H., Shimanaka K., Tokura F., Hayashi Y., Hara Y., Nakanishi M. MOCVD growth of GaN on porous silicon substrates. Journal of Crystal Growth. 2008;310: 4900–4903. https://doi.org/10.1016/j.jcrysgro.2008.08.030
Lo Y. H. New approach to grow pseudomorphic structures over the critical thickness. Applied Physics Letters. 1991;59(18): 2311-2313. https://doi.org/10.1063/1.106053
Wang K., Song Y., Zhang Y., Zhang Y., Cheng Z. Quality improvement of GaN epi-layers grown with a strain-releasing scheme on suspended ultrathin Si nanoflm substrate. Nanoscale Research Letters. 2022;17(1): 99. https://doi.org/10.1186/s11671-022-03732-1
Wang X., Wu A., Chen J., Wu Y., Zhu J., Yang H. Study of GaN growth on ultra-thin Si membranes. Solid State Electron. 2008;52(6): 986–989. https://doi.org/10.1016/j.sse.2008.01.026
Smirnov V. K., Kibalov D. S., Orlov O. M., Graboshnikov V. V. Technology for nanoperiodic doping of a metal–oxide–semiconductor field-effect transistor channel using a self-forming wave-ordered structure. Nanotechnology. 2003;14(7): 709–715. https://doi.org/10.1088/0957-4484/14/7/304
Bessolov V. N., Kompan M. E., Konenkova E. V., Rodin S. N. Deformation of semipolar and polar gallium nitride synthesized on a silicon substrate. Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya. 2022;86(7): 981–984. (In Russ., Abstract in Eng.). https://doi.org/10.31857/S0367676522070109
Kim Ch., Robinson I. K., Myoung J., Shim K., Yoo M. C., Kim K. Critical thickness of GaN thin films on sapphire (0001). Applied Physics Letters. 1996;69: 2358–2360. https://doi.org/10.1063/1.117524
Freund L. B., Floro J. A., Chason E. Extensions of the Stoney formula for substrate curvature to configurations with thin substrates or large deformations. Applied Physics Letters. 1999;74: 1987–1989. https://doi.org/10.1063/1.123722
Krost A., Dadgar A., Strassburger G., Clos R. GaN-based epitaxy on silicon: stress measurements. Physica Status Solidi (a). 2003;200(1): 26–35. https://doi.org/10.1002/pssa.200303428
Katona M., Speck J. S., Denbaars S. P. Effect of the nucleation layer on stress during cantilever epitaxy of GaN on Si (111). Physica Status Solidi (a). 2002;194(2): 550–553. https://doi.org/10.1002/1521-396x(200212)194:2<550::aid-pssa550>3.0.co;2-r
Wang K., Reeber R.R. Thermal expansion of GaN and AlN. Materials Research Society Symposia Proceedings. 1998;482: 863–868. https://doi.org/10.1557/PROC-482-863
Tanaka A., Choi W., Chen R., Dayeh Sh. A. Si complies with GaN to overcome thermal mismatches for the heteroepitaxy of thick GaN on Si. Advanced Materials. 2017;29(38): 1702557. https://doi.org/10.1002/adma.201702557
Copyright (c) 2023 Конденсированные среды и межфазные границы
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.