PRETRANSITIONAL PHENOMENA IN THE REGION OF STRUCTURAL PHASE TRANSITION IN POTASSIUM SULFATE

  • Amil R. Aliev Amirkhanov Institute of Physics, Dagestan Scientifi c Center, Russian Academy of Sciences 94, M. Yaragskogo str., 367003 Makhachkala, Republic of Dagestan, Russian Federation https://orcid.org/0000-0002-3858-3737
  • Isa R. Akhmedov Amirkhanov Institute of Physics, Dagestan Scientifi c Center, Russian Academy of Sciences 94, M. Yaragskogo str., 367003 Makhachkala, Republic of Dagestan, Russian Federation
  • Murad G. Kakagasanov Amirkhanov Institute of Physics, Dagestan Scientifi c Center, Russian Academy of Sciences 94, M. Yaragskogo str., 367003 Makhachkala, Republic of Dagestan, Russian Federation
  • Zakir A. Aliev Amirkhanov Institute of Physics, Dagestan Scientifi c Center, Russian Academy of Sciences 94, M. Yaragskogo str., 367003 Makhachkala, Republic of Dagestan, Russian Federation
Keywords: Raman scattering, ionic crystals, molecular spectroscopy, vibrational relaxation, pretransition, diffuse phase transition, sulfates.

Abstract

Purpose. The Raman spectroscopy methods were used to study the structural-dynamic properties and molecular relaxation processes in crystalline potassium sulfate K2SO4 in the temperature range from 293 K to 900 K.
Results. The temperature dependences of the position of the maximum v (frequency), width w, and intensity I of the spectral band corresponding to fully symmetric vibration were analyzed v1(A) of sulfate ion SO4 2–, in the spectral range from 963 cm–1 to 976 cm–1. With increasing temperature, the oscillation frequency decreases. At approximately 650 K, certain features of the temperature dependence v(T) take place. With a further increase in temperature, the frequency continues to decrease. At the point of the structural phase transition of the fi rst kind (Ts = 854 K),
the decrease in frequency is stopped. With increasing temperature, the width increases, and the intensity decreases. At approximately 650 K, certain features of the temperature dependences w(T) and I(T) take place. The decrease in intensity stops and in the temperature range 650–850 K, the intensity remains almost constant. In the fi rst order structural phase transition (Ts = 854 K), the intensity decreases. The width growth at a temperature T ≈ 650 K is suspended, and then again the width begins to increase. Closer to the fi rst-order structural phase transition (Ts = 854 K),
the width growth slows down and at the point of the fi rst-order structural phase transition (Ts = 854 K), the width decreases.
Conclusions. It was established that in crystalline potassium sulfate K2SO4 the structural phase transition of the fi rst kind is extended. At the phase transition temperature (Ts = 854 K), the width increases sharply, and the frequency decreases sharply, decreasing with a further increase
in temperature. The existence of a pre-transition region in the studied crystalline potassium sulfate K2SO4 was found. This pre-transition region takes place in the temperature range from 650 K to Ts = 854 K.

 

 

REFERENCES

  1. Ivanova E. S., Petrzhik E. A., Gainutdinov R. V., Lashkova A. K., Volk T. R. Fatigue processes in triglycine sulfate and the effect of a magnetic fi eld on them. Phys. Solid State, 2017, vol. 59(3), ph. 569–574. https://doi.org/10.1134/S1063783417030155
  2. Aliev A. R., Akhmedov I. R., Kakagasanov M. G., Aliev Z. A., Gafurov M. M., Rabadanov K. Sh., Amirov A. M. Inelastic intermolecular exchange of vibrational quanta and relaxation of vibrationally excited states in solid binary systems. Phys. Solid State, 2017, vo l . 59(4), pp. 752–757. https://doi.org/10.1134/10.1134/S1063783417040035
  3. Bondarev V. S., Mikhaleva E. A., Flerov I. N., Gorev M. V. Electrocaloric effect in triglycine sulfate under equilibrium and nonequilibrium thermodynamic conditions. Phys. Solid State, 2017, vol. 59(6), pp. 1118–1126. https://doi.org/10.1134/S1063783417060051
  4. Aliev A. R., Akhmedov I. R., Kakagasanov M. G., Aliev Z. A., Gafurov M. M., Rabadanov K. Sh., Amirov A. M. Relaxation of vibrationally excited states insolid binary systems “carbonate – sulfate”. Phys. Solid State, 2018, vol. 60(2), pp. 347–351. https://doi.org/10.1134/S1063783418020038
  5. Nguyen Hoai Thu’o’ng, Sidorkin A. S., Milovidova S. D. Dispersion of dielectric permittivity in a nanocrystallinecellulose–triglycine sulfate composite at low and ultralow frequencies. Phys. Solid State, 2018, vo l . 60(3), pp. 559–565. https://doi.org/10.1134/S1063783418030320
  6. Aliev A. R., Akhmedov I. R., Kakagasanov M. G., Aliev Z. A., Gafurov M. M., Rabadanov K. Sh., Amirov A. M. Vibrational relaxation in LiNO3 – LiClO4, Na2CO3 – Na2SO4, and KNO3 – KNO2 solid binary systems. Rus. J. Phys. Chem. B, 2018, vol. 12(3), pp. 357–362. https://doi.org/10.1134/S1990793118030211
  7. Mikhaleva E. A., Flerov I. N., Kartashev A. V., Gorev M. V., Molokeev M. S., Korotkov L. N., Rysiakiewicz-Pasek E. Specifi c heat and thermal expansion of triglycine sulfate–porous glass nanocomposites. Phys. Solid State, 2018, vol. 60(7), pp. 1338–1343. https://doi.org/10.1134/S1063783418070181
  8. Korabel’nikov D. V., Zhuravlev Yu. N. Ab initio structure and vibration properties of oxyanionic crystalline hydrates. Phys. Solid State, 2018, vol. 60(10), pp. 2058-2065. https://doi.org/10.1134/S106378341810013X
  9. Koposov G. D., Bardyug D. Yu. Analysis of ice premelting in water-containing disperse media. Tech. Phys. Lett., 2007, vol. 33(7), pp. 622–624. https://doi.org/10.1134/S1063785007070243
  10. Demikhov E. I., Dolganov V. K. Pretransitional effects near blue phases of a cholesteric liquid crystal. JETP Lett., 1983, vol. 38(8), pp. 445–447. (in Russ.)
  11. Kizel’ V. A., Panin S. I. Pretransition phenomena in cholesterics with a short helix pitch. JETP Lett., 1986, vol. 44(2), pp. 93–96. (in Russ.)
  12. Klopotov A. A., Chekalkin T. L., Gyunter V. E. Effect of preliminary deformation on the fi ne structure of a TiNi-based alloy in the premartensitic region. Tech. Phys., 2001, vol. 46(6), pp. 770–772. https://doi.org/10.1134/1.1379650
  13. Grishkov V. N., Lotkov A. I., Dubinin S. F., Teploukhov S.G., Parkhomenko V.D. Short-wavelength atomic-displacement modulation preceding the B2 →B19’ martensitic transformation in a TiNi-based alloy. Phys. Solid State, 2004, vol. 46(8), pp. 1386–1393. https://doi.org/10.1134/1.1788767
  14. Mel’nikova S. V., Isaenko L. I., Pashkov V. M., Pevnev I. V. Phase transition in a KPb2Br5 crystal. Phys. Solid State, 2005, vol. 47(2), pp. 332–336. https://doi.org/10.1134/1.1866415
  15. Mel’nikova S. V., Fokina V. D., Laptash N. M. Phase transitions in oxyfl uoride (NH4)2WO2F4. Phys. Solid State, 2006, vol. 48(1), pp. 117–121. https://doi.org/10.1134/S1063783406010239
  16. Mel’nikova S. V., Isaenko L. I., Pashkov V. M., Pevnev I. V. Search for and study of phase transitions in some representatives of the APb2X5 family. Phys. Solid State, 2006, vol. 48(11), pp. 2152–2156. https://doi.org/10.1134/S1063783406110217
  17. Mel’nikova S. V., Laptash N. M., Aleksandrov K. S. Optical studies of phase transitions in oxyfl uoride (NH4)2NbOF5. Phys. Solid State, 2010, vol. 52(10), pp. 2168–2172. https://doi.org/10.1134/S1063783410100240
  18. Slyadnikov E. E. Pretransition state and structural transition in a deformed crystal. Phys. Solid State, 2004, vol. 46(6), pp. 1095–1100. https://doi.org/10.1134/1.1767251
  19. Belyaev A. P., Rubets V. P., Antipov V. V. Infl uence of temperature on the rhombic shape of paracetamol molecular crystals. Technical Physics, 2017, vol. 62(4), pp. 645-647. https://doi.org/10.1134/S1063784217040041
  20. Aliev A. R., Gafurov M. M., Akhmedov I. R., Kakagasanov M.G., Aliev Z.A. Structural phase transition peculiarities in ion-molecular perchlorate crystals. Phys. Solid State, 2018, vol. 60(6), pp. 1203–1213. https://doi.org/10.1134/S1063783418060045
  21. Maksimov V. I., Maksimova E. N., Surkova T. P., Vokhmyanin A. P. On possible states of the crystal structure preceding to a phase transition in Zn1–xVxSe (0.01 ≤ x ≤ 0.10) crystals. Phys. Solid State, 2018, vol . 60(12), pp. 2424–2435. https://doi.org/10.1134/S1063783419010177
  22. Vtyurin A. N., Bulou A., Krylov A. S., Afanas’ev M. L., Shebanin A. P. The cubic-to-monoclinic phase transition in (NH4)3ScF6 cryolite: A Raman scattering study. Phys. Solid State, 2001, vol. 43(12), pp. 2307–2310. https://doi.org/10.1134/1.1427961
  23. Karpov S. V., Shultin A. A. Orientational melting and pretransition in ordered phases of rubidium and cesium nitrates. Sov. Phys. Solid State, 1975, vol. 17(10), pp. 1915–1919. (in Russ.)
  24. Gafurov M. M., Aliev A. R., Akhmedov I. R. Raman and infrared study of the crystals with molecular anions in the region of the solid – liquid phase transition. Spectrochim. Acta, 2002, vol. 58A(12), pp. 2683–2692. https://doi.org/10.1016/S1386-1425(02)00014-8
  25. Gafurov M. M., Aliev A. R. Molecular relaxation processes in the salt systems containing anions of various configurations. Spectrochim. Acta, 2004, vol. 60A(7), pp. 1549–1555. https://doi.org/10.1016/j.saa.2003.06.004
  26. Chemical Encyclopedy. V. 2. Moscow, Sov. Entsiklopediya, 1990, p. 289 (in Russ.)
  27. Bale C. W., Pelton A. D. Coupled phase diagram and thermodynamic analysis of the 18 binary systems formed among Li2CO3, K2CO3, Na2CO3, LiOH, KOH, NaOH, Li2SO4, K2SO4 and Na2SO4. CALPHAD, 1982, vol. 6(4), pз. 255–278. https://doi.org/10.1016/0364-5916(82)90020-7
  28. Dessureault Y., Sangster J., Pelton A. D. Coupledphase diagram / thermodynamic analysis of the ninecommon-ion binary systems involving the carbonates and sulfates of lithium, sodium, and potassium. J. Electrochem. Soc., 1990, vol. 137(9), pр. 2941–2950. https://doi.org/10.1149/1.2087103
  29. Lindberg D., Backman R., Chartrand P. Thermodynamic evaluation and optimization of the (Na2CO3 + Na2SO4 + Na2S + K2CO3 + K2SO4 + K2S) system. J. Chem. Thermodynamics, 2007, vol. 39, pp. 942–960. https://doi.org/10.1016/j.jct.2006.11.002
  30. Aliev A. R., Akhmedov I. R., Kakagasanov M. G., Aliev Z. A., Gafurov M. M., Rabadanov K. Sh., Amirov A. M. Relaxation of vibrationally excited states in solid “nitrate – nitrite” binary systems. Opt. Spectrosc., 2017, vol. 123(4), pp. 587–589. https://doi.org/10.1134/S0030400X17100022

Downloads

Download data is not yet available.

Author Biographies

Amil R. Aliev, Amirkhanov Institute of Physics, Dagestan Scientifi c Center, Russian Academy of Sciences 94, M. Yaragskogo str., 367003 Makhachkala, Republic of Dagestan, Russian Federation

Dr. Sci. (Phys. -Math.), Professor, Chief Researcher, Amirkhanov Institute of Physics, Dagestan Scientific Center, Russian Academy of Sciences, Makhachkala, Republic of Dagestan, Russian Federation; e-mail: amilaliev@rambler.ru. ORCID iD 0000-0002-3858-3737

Isa R. Akhmedov, Amirkhanov Institute of Physics, Dagestan Scientifi c Center, Russian Academy of Sciences 94, M. Yaragskogo str., 367003 Makhachkala, Republic of Dagestan, Russian Federation

Cand. Sci. (Phys. -Math.), Senior Researcher, Amirkhanov Institute of Physics, Dagestan Scientific Center, Russian Academy of Sciences, Makhachkala, Republic of Dagestan, Russian Federation; . e-mail: analit0@mail.ru

Murad G. Kakagasanov, Amirkhanov Institute of Physics, Dagestan Scientifi c Center, Russian Academy of Sciences 94, M. Yaragskogo str., 367003 Makhachkala, Republic of Dagestan, Russian Federation

Researcher, Amirkhanov Institute of Physics, Dagestan Scientific Center, Russian Academy of Sciences, Makhachkala, Republic of Dagestan, Russian Federation; e-mail:murad5569@mail.ru

Zakir A. Aliev, Amirkhanov Institute of Physics, Dagestan Scientifi c Center, Russian Academy of Sciences 94, M. Yaragskogo str., 367003 Makhachkala, Republic of Dagestan, Russian Federation

Engineer, Amirkhanov Institute of Physics, Dagestan Scientific Center, Russian Academy of Sciences, Makhachkala, Republic of Dagestan, Russian Federation; e-mail: zakiraliev92@rambler.ru


Abstract views: 0
PDF Downloads: 0
Published
2019-09-26
How to Cite
Aliev, A., Akhmedov, I., Kakagasanov, M., & Aliev, Z. (2019). PRETRANSITIONAL PHENOMENA IN THE REGION OF STRUCTURAL PHASE TRANSITION IN POTASSIUM SULFATE. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 21(3), 350-357. https://doi.org/https://doi.org/10.17308/kcmf.2019.21/1148
Section
Статьи