A study of gallium oxide by using the piezoelectric composite oscillator technique at a frequency of 100 kHz

Keywords: Gallium oxide, Single crystal, Defect structure, Real structure, Semiconductor, Piezoelectric composite oscillator technique

Abstract

     The article presents the results of the study of the mechanical properties and defect structure of gallium oxide (Ga2O3) by using the piezoelectric composite oscillator technique. Bulk samples of the Ga2O3 beta phase in the form of single crystals and their intergrowths were obtained by growth from a melt with a shaper (Stepanov technique). The research involved studying the dependences of the longitudinal elastic modulus and the damping of elastic vibrations at a frequency of 100 kHz on the strain amplitude. Changes in the elastic and microplastic properties of the samples at different temperatures were attributed to possible relaxation phenomena in the structure of the material.
      Studying the defect structure in samples of pure and doped Ga2O3 is necessary to improve the technology for the production of large single crystals. The fundamental questions in this area are the influence of defects on the anisotropy of electrical conductivity, band structure, and other functional properties of the resulting semiconductor material. The purpose of this article is to establish the features of sample preparation, research, and interpretation of the results obtained by the piezoelectric composite oscillator technique for gallium oxide samples.
      In the studied samples, the first longitudinal vibration mode was excited, which corresponded to a length of about 27 mm and a small cross-section of the sample. The temperature dependences in the region of low and high strain amplitudes were determined separately. The crystalline quality of the prepared samples was assessed by X-ray diffraction with the analysis of the rocking curve.
       The value of Young’s modulus obtained along the growth axis (crystalline orientation <010>) in Ga2O3 crystals E≈260 GPa is in line with the results of previous studies. Relaxation peaks corresponding to various dislocation interactions were found on the temperature dependences of internal friction at a temperature of 280 K

Downloads

Download data is not yet available.

Author Biographies

Vladimir V. Kaminskii, ITMO University, 49 Kronverksky pr., St. Petersburg 197101, Russian Federation

Cand. Sci. (Phys.–Math.),
Head of the Laboratory, ITMO University (Saint
Petersburg, Russian Federation)

Dmitrii A. Kalganov, ITMO University, 49 Kronverksky pr., St. Petersburg 197101, Russian Federation

Junior Researcher at the
Advanced Data Transfer System Institute, ITMO
University (Saint Petersburg, Russian Federation)

Dmitrii I. Panov, ITMO University, 49 Kronverksky pr., St. Petersburg 197101, Russian Federation

Cand. Sci. (Phys.–Math.), Head of the Laboratory, ITMO University (Saint Petersburg, Russian Federation).

Vladislav A. Spiridonov, ITMO University, 49 Kronverksky pr., St. Petersburg 197101, Russian Federation

Engineer at the Advanced
Data Transfer System Institute, ITMO University (Saint
Petersburg, Russian Federation)

Andrey I. Ivanov, ITMO University, 49 Kronverksky pr., St. Petersburg 197101, Russian Federation

Engineer at the Advanced Data
Transfer System Institute, ITMO University (Saint
Petersburg, Russian Federation)

Margarita V. Rozaeva, ФГАОУ ВО «Национальный исследовательский университет ИТМО», пр. Кронверкский, 49, Санкт-Петербург 197101, Российская Федерация

master student, Engineer at
the Advanced Data Transfer System Institute, ITMO
University (Saint Petersburg, Russian Federation)

Dmitrii A. Bauman, master student, Engineer at the Advanced Data Transfer System Institute, ITMO University (Saint Petersburg, Russian Federation).

Cand. Sci. (Phys.–Math.),
Associate Professor at the Advanced Data Transfer
System Institute, ITMO University (Saint Petersburg, Russian Federation)

Alexey E. Romanov, ITMO University, 49 Kronverksky pr., St. Petersburg 197101, Russian Federation

Dr. Sci. (Chem.), Professor, Head
of the Advanced Data Transfer System Institute, ITMO
University (Saint Petersburg, Russian Federation)

References

Kitsay A. A., Nosov YU. G., CHikiryaka A. V., Nikolaev V. I. Growth of b-Ga2O3 single crystals by the solution-melt method. Technical Physics Letters. 2023;49(14): 16–18. https://doi.org/10.21883/PJTF.2023.14.55819.19589

Kalygina V. M., Nikolaev V. I., Almaev A. V., Tsymbalov A. V., Petrova Y. S., Pechnikov I. A., Butenko P. N. Properties of resistive structures based on gallium oxide polymorphic phases. Technical Physics Letters. 2020;46: 867–870. https://doi.org/10.1134/S1063785020090060

Green A. J., Speck J., Xing G., … Higashiwaki M. b-gallium oxide power electronics. Apl Materials. 2022;10(2): 029201. https://doi.org/10.1063/5.0060327

Kalygina V. M., Lygdenova T. Z., Petrova Y. S., Chernikov E. V. Influence of the substrate material on the properties of gallium-oxide films and galliumoxide- based structures. Semiconductors. 2019;53(4): 452–457. https://doi.org/10.1134/S1063782619040122

Kaur D., Kumar M. A strategic review on gallium oxide based deep-ultraviolet photodetectors: recent progress and future prospects. Advanced Optical Materials. 2021;9(9): 2002160. https://doi.org/10.1002/adom.202002160

Kalygina V. M., Kiselyeva O. S., Kushnarev B. O., Oleinik V. L., Petrova Y. S., Tsymbalov A. V. Selfpowered photo diodes based on Ga2O3/n-GaAs structures. Semiconductors. 2022;56(9): 707–711. https://doi.org/10.21883/SC.2022.09.54139.9868

Lu X., Zhou L., Chen L., Ouyang X., Liu B., Xu J., Tang H. Schottky X-ray detectors based on a bulk b-Ga2O3 substrate. Applied Physics Letters. 2018;112(10): 103502 https://doi.org/10.1063/1.5020178

Zhu J., Xu Z., Ha S., Li D., Zhang K., Zhang H., Feng J. Gallium oxide for gas sensor applications: A comprehensive review. Materials. 2022:15(20): 7339. https://doi.org/10.3390/ma15207339

Nikolaev V. I., Almaev A. V., Kushnarev B. O., … Chernikov E. V. Gas-sensing properties of In2O3-Ga2O3 alloy films. Technical Physics Letters. 2022;48(7): 76–79. https://doi.org/10.21883/TPL.2022.07.54046.19211

Petrenko A. A., Kovach Ya. N., Bauman D. A., Odnoblyudov M. A., Bougrov V. E., Romanov A. E. Current state of Ga2O3-based electronic and optoelectronic devices. Brief review. Reviews on Advanced Materials and Technologies. 2021;3(2): 1–26. https://doi.org/10.17586/2687-0568-2021-3-2-1-26

Bauman D. A., Panov D. Iu., Spiridonov V. A… Romanov A. E. High quality b-Ga2O3 bulk crystals, grown by edge-defined film-fed growth method: growth features, structural and thermal properties. Journal of Vacuum Science and Technology A. 2023;41: 053203. https://doi.org/10.1116/6.0002644

Bauman D. A., Panov D. I., Spiridonov V. A., Kremleva A. V., Romanov A. E. On the successful growth of bulk gallium oxide crystals by the EFG (Stepanov) method. Functional Materials Letters. 2023: 2340026. https://doi.org/10.1142/S179360472340026X

Son N. T., Goto K., Nomura K., … Janzén E. Electronic properties of the residual donor in unintentionally doped b-Ga2O3. Journal of Applied Physics. 2016;120(23): 235703. https://doi.org/10.1063/1.4972040

Ivanova E. V., Dementev P. A., Zamoryanskaya M. V., … Bougrov V. E. Study of charge carrier traps in bulk crystal gallium oxide b-Ga2O3. Physics of the Solid State. 2021;63(4): 544–549. https://doi.org/10.1134/S1063783421040089

Wang Z., Chen X., Ren F. F., Gu S., Ye J. Deeplevel defects in gallium oxide. Journal of Physics D: Applied Physics. 2020;54(4): 043002. https://doi.org/10.1088/1361-6463/abbeb1

Manikanthababu N., Sheoran H., Siddham P., Singh R. Review of radiation-induced effects on b-Ga2O3 aterials and devices. Crystals. 2022;12(7): 1009. https://doi.org/10.3390/cryst12071009

Seyidov P., Ramsteiner M., Galazka Z., Irmscher K. Resonant electronic Raman scattering from Ir4+ ions in b-Ga2O3. Journal of Applied Physics. 2022;131(3): 035707. https://doi.org/10.1063/5.0080248

Abdrakhmanov V. L., Zav’yalov D. V., Konchenkov V. I., Kryuchkov S. V. Effect of a strong electromagnetic wave on the conductivity of b-Ga2O3. Bulletin of the Russian Academy of Sciences: Physics. 2020;84(1): 53-57. https://doi.org/10.3103/S1062873820010037

Guzilova L. I., Grashchenko A. S., Pechnikov A. I., … Nikolaev V. I. Materials Physics and Mechanics. 2016;29(2): 166–171. (In Russ., abstract in Eng.). Available at: https://www.ipme.ru/e-journals/MPM/no_22916/MPM229_09_guzilova.pdf

Quimby S. L. On the experimental determination of the viscosity of vibrating solids. Physical Review. 1925; 25(4): 558. https://doi.org/10.1103/PhysRev.25.558

Kimball A. L., Lovell D. E. Internal friction in solids. Physical Review. 1927;30(6): 948. https://doi.org/10.1103/PhysRev.30.948

Marx J. Use of the piezoelectric gauge for internal friction measurements. Review of Scientific Instruments. 1951;22(7): 503–509. https://doi.org/10.1063/1.1745981

Naimi E. K. Internal-friction anisotropy in a real crystal and construction of characteristic internalfriction surfaces. Soviet Physics Journal. 1975;18: 371–375. https://doi.org/10.1007/BF00889303

Granato A. V., Lücke K. Application of dislocation theory to internal friction phenomena at high frequencies. Journal of Applied Physics. 1956;27(7): 789–805. https://doi.org/10.1063/1.1722485

Robinson W. H., Edgar A. The piezoelectric method of determining mechanical damping at frequencies of 30 to 200 KHz. IEEE Transactions on Sonics and Ultrasonics. 1974;21(2): 98–105. https://doi.org/10.1109/T-SU.1974.29798

Tyapunina N. A., Zinenkova G. M., Shtrom E. V. Dislocation multiplication in alkali halide crystals exposed to ultrasonic waves. The original stage. Physica Status Solidi (a). 1978;46(1): 327–336. https://doi.org/10.1002/pssa.2210460143

Nikolaev V. I., Stepanov S. I., Romanov A. E., Bougrov V. E. Gallium oxide. In: Single Crystals of Electronic Materials. R. Fornari (ed.). Woodhead Publishing; 2019. 487–521. https://doi.org/10.1016/B978-0-08-102096-8.00014-8

Yamaguchi H., Kuramata A., Masui T. Slip system analysis and X-ray topographic study on b-Ga2O3. Superlattices and Microstructures. 2016;99: 99–103. https://doi.org/10.1016/j.spmi.2016.04.030

Wu Y., Rao Q., Best J. P., Mu D., Xu X., Huang H. Superior room temperature compressive plasticity of submicron beta-phase gallium oxide single crystals. Advanced Functional Materials. 2022;32(48): 2207960. https://doi.org/10.1002/adfm.202207960

Kaminskii V. V., Kalganov D. A., Podlesnov E., Romanov A. E. Influence of dislocation and twin structures on the mechanical characteristics of Ni- Mn-Ga alloys at ultrasonic frequencies. Frontier Materials and Technologies. 2022;2: 28–36. https://doi.org/10.18323/2782-4039-2022-2-28-36

Kaminskii V. V., Lyubimova Y. V., Romanov A. E. Probing of polycrystalline magnesium at ultrasonic frequencies by mechanical spectroscopy. Materials Physics and Mechanicals. 2020;44(1): 19–25. https://doi.org/10.18720/MPM.4412020_3

Guzilova L. I., Kardashev B. K., Pechnikov A. I., Nikolaev V. I. Elasticity and Inelasticity of bulk GaN crystals. Technical Physics. 2020;90(1): 138–142. https://doi.org/10.1134/s1063784220010089

Sapozhnikov K. V., Golyandin S. N., Kustov S. B. Amplitude dependence of the internal friction and young’s modulus defect of polycrystalline indium. Physics of the Solid State. 2010;52(1): 43–48. https://doi.org/10.1134/S1063783410010087

Lebedev A. B., Kustov S. V., Kardashov B. K. On internal friction and the Young’s modulus defect in the crystal deformation process*. Solid State Physics. 1992;34(9): 2915. (In Russ.). Available at: https://journals.ioffe.ru/articles/viewPDF/22631

Zheng X. Q., Lee J., Rafique S., Han L., Zorman C. A. Zhao H., Feng P. X. L. Ultrawide band gap b-Ga2O3 nanomechanical resonators with spatiallyvisualized multimode motion. ACS Applied Materials and Interfaces 2017;9(49): 43090–43097. https://doi.org/10.1021/acsami.7b13930

Zheng X. Q., Zhao H., Feng P. X. L. A perspective on b-Ga2O3 micro/nanoelectromechanical systems. Applied Physics Letters. 2022;120(4). https://doi.org/10.1063/5.0073005

Golovin I. S. Internal friction and mechanical spectroscopy of metals and alloys. Metal Science and Heat Treatment. 2012;54(5-6): 207–208. https://doi.org/10.1007/s11041-012-9482-7

Zakgeim D. A., Panov D. I., Spiridonov V. A., … Bougrov V. E. Volume gallium oxide crystals grown from melt by the Czochralski method in an oxygen-containing atmosphere. Technical Physics Letters. 2020;46: 1144–1146. https://doi.org/10.1134/S1063785020110292

Samoylov A. M., Kopytin S. S., Oreshkin K. V., Shevchenko E. A. Synthesis of chemically pure b-phase powders of gallium(III) oxide. Condensed Matter and Interphases. 2022;24(3): 345–355. https://doi.org/10.17308/kcmf.2022.24/9857

Published
2023-10-13
How to Cite
Kaminskii, V. V., Kalganov, D. A., Panov, D. I., Spiridonov, V. A., Ivanov, A. I., Rozaeva, M. V., Bauman, D. A., & Romanov, A. E. (2023). A study of gallium oxide by using the piezoelectric composite oscillator technique at a frequency of 100 kHz. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 25(4), 548-556. https://doi.org/10.17308/kcmf.2023.25/11484
Section
Original articles