Electrophysical properties of composite materials based on graphene oxide and polyaniline

Keywords: Composite materials, Polyaniline, Graphene oxide, Specific conductivity, Band gap

Abstract

The Hall method was used to study the electrical characteristics of composite materials based on polyaniline (PANI), graphene oxide (GO), and manganese. A comparison of these characteristics of GO-PANI and GO-PANI-Mn composite systems with GO and PANI monomaterials was carried out.

It was demonstrated that the electrical conductivity of composites was significantly higher than that of monomaterials and was determined by the charge carrier mobility.

Based on UV-visible and IR spectroscopy data, it was shown that the optical band gap (Eg) of the GO-PANI composite increased with the addition of metal, but decreased compared to PANI; the shift of characteristic vibrations to lower frequencies indicated a covalent interaction of the GO-PANI composite with manganese cations

Downloads

Download data is not yet available.

Author Biographies

Tatyana N. Myasoedova, Southern Federal University 105/42 Bolshaya Sadovaya str., Rostov-on-Don 344006, Russian Federation

Cand. Sci. (Tech.),
Associate Professor, Leading Researcher, Institute of
Nanotechnologies, Electronics and Instrument
Engineering, Southern Federal University (Taganrog,
Russian Federation)

Olga V. Nedoedkova, Southern Federal University 105/42 Bolshaya Sadovaya str., Rostov-on-Don 344006, Russian Federation

2nd year graduate student,
Teaching Assistant at the Department of Physics of
Nanosystems and Spectroscopy, Faculty of Physics,
Southern Federal University (Rostov-on-Don, Russian
Federation)

Galina E. Yalovega, Southern Federal University 105/42 Bolshaya Sadovaya str., Rostov-on-Don 344006, Russian Federation

Dr. Sci. (Phys.–Math.), Head of
the Department of Physics of Nanosystems and
Spectroscopy, Faculty of Physics, Southern Federal
University (Rostov-on-Don, Russian Federation)

References

Baskakov S. A., Shulga Yu. M., Baskakova Yu. V., Zolotarenko A. D., Kuznetsov I. E., Efimov O. N., Gusev A. L. New composite materials for supercapacitor electrodes based on reduced oxide graphene and polyaniline. International scientific journal for Alternative Energy and Ecology. 2012;12(116): 66–76.

Yang D. Application of nanocomposites for supercapacitors: Characteristics and properties. Nanocomposites – New Trends and Developments. 2012. https://doi.org/10.5772/50409

Salvatierra R. V., Zitzer G., Savu S.-A., … Rocco M. L. M. Carbon nanotube/polyaniline nanocomposites: Electronic structure, doping level and morphology investigations. Synthetic Metals. 2015;203: 16–21 https://doi.org/10.1016/j.synthmet.2015.01.034

Singh G., Kumar Y., Husain S. Fabrication of symmetric polyaniline/nano-titanium dioxide/activated carbon supercapacitor device in different electrolytic mediums: Role of high surface area of carbon and facile interactions with nano-titanium dioxide for high-performance supercapacitor. Energy Technology. 2023;11(1): 2200931. https://doi.org/10.1002/ente.202200931

Savić M., Janošević Ležaić A., Gavrilov N., … Ćirić-Marjanović G. Carbonization of MOF-5/polyaniline composites to N, O-doped carbon/ZnO/ZnS and N, O-doped carbon/ZnO composites with high specific capacitance, specific surface area and electrical conductivity. Materials. 2023;16(3): 1018. https://doi.org/10.3390/ma16031018

Lv P., Tang X., Zheng R., Ma X., Yu K., Wei W. Graphene/polyaniline aerogel with superelasticity and high capacitance as highly compression-tolerant supercapacitor electrode. Nanoscale Research Letters. 2017;12(1): 1–11. https://doi.org/10.1186/s11671-017-2395-z

Wang S., Tan Z., Li Y., Sun L., Zhang T. Synthesis, characterization and thermal analysis of polyaniline/ZrO2 composites. Thermochimica Acta. 2006;441(2): 191–194. https://doi.org/10.1016/j.tca.2005.05.020

Sawarkar M., Pande S. A, Agrawal P. S. Synthesis and characterization of polyaniline doped metal oxide nanocomposites. International Research Journal of Engineering and Technology. 2015;2(9): 2427–2432. https://www.irjet.net/archives/V2/i9/IRJET-V2I9295.pdf

Mostafaei A., Zolriasatein A Synthesis and characterization of conducting polyaniline nanocomposites containing ZnO nanorods. Progress in Natural Science: Materials International. 2012;22(4): 273–280. https://doi.org/10.1016/j.pnsc.2012.07.002

Chen L., Sun L., Luan F., … Liu, X. X. Synthesis and pseudocapacitive studies of composite films of polyaniline and manganese oxide nanoparticles. Journal of Power Sources. 2010;195(11):3742–3747. https://doi.org/10.1016/j.jpowsour.2009.12.036

Lei X., Su Z. Conducting polyaniline coated nano silica by in situ chemical oxidative grafting polymerization. Polymer Advanced Technology. 2007;18(6): 472–476 https://doi.org/10.1002/pat.905

Gorshkov N. V., Yakovleva E. V., Krasnov V. V., … Yakovlev A. V. Electrode for a supercapacitor based on electrochemically synthesized multilayer graphene oxide. Russian Journal of Applied Chemistry, 2021;94(3): 388–396. https://doi.org/ https://doi.org/10.1134/s1070427221030149

Shao Y., El-Kady M. F., Wang L. J., … Kaner R. B. Graphene-based materials for flexible supercapacitors. Chemical Society Reviews. 2015;44: 3639–3665. https://doi.org/10.1039/c4cs00316k

Cai Y., Ke Q., Zhang G., Feng Y. P., Vivek B. S., Zhang Y. W. Giant phononic anisotropy and unusual anharmonicity of phosphorene: interlayer coupling and strain engineering. Advanced Functional Materials. 2015; 25: 2230e6. https://doi.org/10.1002/adfm.201404294

Wang G. K., Sun X., Lu F. Y., … Lian J. Flexible pillared graphene-paper electrodes for highperformance electrochemical supercapacitors. Small. 2012;8: 452e9. https://doi.org/10.1002/smll.201101719

Moussa M., El-kady M. F., Zhao Z. Recent progress and performance evaluation for polyaniline/graphene nanocomposites as supercapacitor electrodes. Nanotechnology 2016;27(44): 42001–42021. https://doi.org/10.1088/0957-4484/27/44/442001

Kumar R., Jahan K., Nagarale R. K., Sharma A., Long N. Lasting electro-osmotic pump with polyaniline-wrapped aminated graphene electrodes. ACS Applied Materials and Interfaces. 2015;7(1): 593−601. https://doi.org/10.1021/am506766e

Shmatko V.A., Myasoedova T. N., Mikhailova T. A., Yalovega G. E. Features of the Electronic structure and chemical bonds of polyanilinebased composites obtained by acid-free synthesis. Condensed Matter and Interphases, 2019;21(4): 569–578. https://doi.org/10.17308/kcmf.2019.21/2367

Myasoedova T. N., Nedoedkova O. V., Kalusulingam R., Mikheykin A. S., Konstantinov A. S., Yalovega G. E. Morphology, molecular and electronic structure of a composite material based on graphene oxide and polyaniline. Physics of the Solid State. 2023; 65(12). https://doi.org/10.61011/FTT.2023.12.56723.4935k

Konwer S., Guha A. K., Dolui S. K. Graphene oxide-filled conducting polyaniline composites as methanol-sensing materials. Journal of Materials Science. 2013;48: 1729–1739. https://doi.org/10.1007/s10853-012-6931-z

Konwer S. Graphene oxide-polyaniline nanocomposites for high performance supercapacitor and their optical, electrical and electrochemical properties. Journal of Materials Science: Materials in Electronics, 2016;27(4): 4139–4146. https://doi.org/10.1007/s10854-016-4273-3

Mallick K., Witcomb M. J., Dinsmore A., Scurrell M. S. Polymerization of aniline by cupric sulfate: A facile synthetic route for producing polyaniline. Journal of Polymer Research. 2006;13: 397–401. https://doi.org/10.1007/s10965-006-9057-7

Hu F., Li W., Zhang J., Meng W. Effect of graphene oxide as a dopant on the electrochemical performance of graphene oxide/polyaniline composite. Journal of Materials Science and Technology. 2014;30(4): 321–327. https://doi.org/10.1016/j.jmst.2013.10.009

Lu X., Yu Y., Chen L., Mao H., Zhang W., Wei Y. Preparation and characterization of polyaniline microwires containing CdS nanoparticles. Chemical Communications. 2004;13: 1522–1523. https://doi.org/10.1039/B403105A

Harish C., Sai Sreeharsha V., Santhosh C., … Nirmala Grace A. Synthesis of polyaniline/graphene nanocomposites and its optical, electrical and electrochemical properties advanced science. Advanced Science, Engineering and Medicine. 2013; 5(2): 140–148. https://doi.org/10.1166/asem.2013.1237

Myasoedova T. N., Moiseeva T. A., Kremennaya M. A., Tirkeshov A., Yalovega G. E. Structure and electrochemical properties of PANI/ZrOX and PANI/SiOX composites. Journal of Electronic Materials. 2020;49(8): 4707–4713. https://doi.org/10.1007/s11664-020-08170-2

Lai L., Chen L., Zhan D., … Lin J. One-step synthesis of NH2−graphene from in situ graphene−oxide reduction and its improved electrochemical properties. Carbon. 2011;49: 3250–3257. https://doi.org/10.1016/j.carbon.2011.03.051

Published
2024-01-31
How to Cite
Myasoedova, T. N., Nedoedkova, O. V., & Yalovega, G. E. (2024). Electrophysical properties of composite materials based on graphene oxide and polyaniline. Condensed Matter and Interphases, 26(1), 104-110. https://doi.org/10.17308/kcmf.2024.26/11812
Section
Original articles