Electrochemical impedance of porous tantalum solids: modeling of frequency response

  • Alexander V. Syugaev Udmurt Federal Research Centre of the Ural Branch of the Russian Academy of Sciences 34 Tatyana Baramzina str., Izhevsk 426067, Russian Federation https://orcid.org/0000-0002-2190-395X
  • Vitaly E. Porsev Udmurt Federal Research Centre of the Ural Branch of the Russian Academy of Sciences 34 Tatyana Baramzina str., Izhevsk 426067, Russian Federation https://orcid.org/0000-0003-1949-7371
Keywords: Electrochemical impedance, Porous structure, Modeling

Abstract

The paper proposes a new approach to the analysis of electrochemical impedance spectra of porous tantalum bodies, which involves modeling the frequency response via an equivalent circuit that takes into account the pore hierarchy. It was shown that the proposed circuit describes well the experimental data and allows characterization of the porous structure, including the contribution of different types of pores to the total capacitance of the porous body, characteristic relaxation times, and activation frequencies for different type pores. Two types of samples were analyzed: a porous tantalum body obtained by sintering Ta powder and a porous tantalum body covered with a Ta2O5 dielectric layer. Modeling showed a significant redistribution of contributions from pores of different types into the total capacitance after the formation of Ta2O5 due to
the preferential isolation of the smallest pores and/or those difficult to access. The results of modeling of the frequency response of the analyzed samples agree well with the scanning electron microscopy data. The proposed approach has the potential to be advantageous for the technology of tantalum capacitors

Downloads

Download data is not yet available.

Author Biographies

Alexander V. Syugaev, Udmurt Federal Research Centre of the Ural Branch of the Russian Academy of Sciences 34 Tatyana Baramzina str., Izhevsk 426067, Russian Federation

Cand. Sci. (Chem.), Research
Fellow at the Laboratory of Ultrafine Systems,
Department of Physics and Chemistry of Nanomaterials
of Physical-Technical Institute, Udmurt Federal
Research Center (Izhevsk, Russian Federation)

Vitaly E. Porsev, Udmurt Federal Research Centre of the Ural Branch of the Russian Academy of Sciences 34 Tatyana Baramzina str., Izhevsk 426067, Russian Federation

Cand. Sci. (Phys.-math), Leading
Research Fellow at the Laboratory of Mechanical
Activation of Organic Systems, Department of Physics
and Chemistry of Nanomaterials of Physical-Technical
Institute, Udmurt Federal Research Center
(Izhevsk, Russian Federation)

References

Kichigin V. I., Sherstobitova I. N., Shein A. B. Impedance of electrochemical and corrosion systems: textbook*. Perm State University Publ.; 2009. 238 p. (In Russ.)

Song H.-K., Jung Y.-H., Lee K.-H., Dao L. H. Electrochemical impedance spectroscopy of porous electrodes: the effect of pore size distribution. Electrochimica Acta. 1999;44(20): 3513–3519. https://doi.org/10.1016/S0013-4686(99)00121-8

Song H.-K., Hwang H.-Y., Lee K.-H., Dao L. H. The effect of pore size distribution on the frequency dispersion of porous electrodes. Electrochimica Acta. 2000;45(14): 2241–2257. https://doi.org/10.1016/S0013-4686(99)00436-3

Keiser H., Beccu K. D., Gutjahr M. A. Abschätzung der poren struktur poröser elektrodenaus impedanzmessungen. Electrochimica Acta. 1976;21(8): 539–543. https://doi.org/10.1016/0013-4686(76)85147-X

Candy J.-P., Fouilloux P., Keddam M., Takenouti H. The characterization of porous electrodes by impedance measurements. Electrochimica Acta. 1981;26(8): 1029–1034. https://doi.org/10.1016/0013-4686(81)85072-4

Raistrick I. D. Impedance studies of porous electrodes. Electrochimica Acta. 1990;35(10): 1579–1586. https://doi.org/10.1016/0013-4686(90)80013-E

Abouelamaiem D. I., He G., Neville T. P., … Brett D. J. L. Correlating electrochemical impedance with hierarchical structure for porous carbon-based supercapacitors using a truncated transmission line model. Electrochimica Acta. 2018;284: 597–608. https://doi.org/10.1016/j.electacta.2018.07.190

Treshchev S. Yu., Starostin S. P., Mikhailiva S. S., … Lebedev S. P. Comparative analysis of the composition and structure of condenser tantalum powder. Chemical Physics and Mesoscopy. 2014;16(4): 609–615. (In Russ., abstract in Eng.). Available at: https://www.elibrary.ru/item.asp?id=22662614

Taberna P. L., Simon P., Fauvarque J. F. Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. Journal of The Electrochemical Society. 2003;150(3): A292–A300. https://doi.org/10.1149/1.1543948

Itagaki M., Suzuki S., Shitanda I., Watanabe K. Electrochemical impedance and complex capacitance to interpret electrochemical capacitor. Electrochemistry. 2007;75(8): 649–655. https://doi.org/10.5796/electrochemistry.75.649

Orazem M. E., Pébère N., Tribollet B. Enhanced graphical representation of electrochemical impedance data. Journal of The Electrochemical Society. 2006;153(4): В129–В136. https://doi.org/10.1149/1.2168377

Pajkossy T. Impedance spectroscopy at interfaces of metals and aqueous solutions – Surface roughness, CPE and related issues. Solid State Ionics. 2005;176(25-28): 1997–2003. https://doi.org/10.1016/j.ssi.2004.06.023

Macdonald D. D., Urquidi-Macdonald M., Bhakta S. D., Pound B. G. The electrochemical impedance of porous nickel electrodes in alkaline media: II. Nonuniform transmission line analysis. Journal of The Electrochemical Society. 1991;138: 1359–1363. https://doi.org/10.1149/1.2085786

Lima-Tenório M. K. , Ferreira C. S. , Rebelo Q. H. F., … Aparecido PocrifkaL. Pseudocapacitance properties of

Сo3O4 nanoparticles synthesized using a modified sol-gel method. Materials Research. 2018;21(2): e20170521. https://doi.org/10.1590/1980-5373-mr-2017-0521

Nquyen P. H., Paasch G. Transfer matrix method for the electrochemical impedance of inhomogeneous porous electrodes and membranes. Journal of Electroanalytical Chemistry. 1999;460(1-2): 63–79. https://doi.org/10.1016/S0022-0728(98)00343-X

Conway B. E. Electrochemical supercapacitors: scientific fundamentals and technological applications. Springer Science & Business Media; 2013. 607 p.

Huang J., Gao Y., Luo J., … Zhang J. Editors’ choice—review—impedance response of porous electrodes: theoretical framework, physical models and applications.. Journal of The Electrochemical Society. 2020; 167:166503. https://doi.org/10.1149/1945-7111/abc655

Syugaev A. V., Zonov R. G., Mikheev K. G., Maratkanova A. N., Mikheev G. M. Electrochemical impedance of laser-induced graphene: Frequency response of porous structure. Journal of Physics and Chemistry of Solids. 2023;188: 111533. https://doi.org/10.1016/j.jpcs.2023.111533

Published
2024-01-31
How to Cite
Syugaev, A. V., & Porsev, V. E. (2024). Electrochemical impedance of porous tantalum solids: modeling of frequency response. Condensed Matter and Interphases, 26(1), 135-145. https://doi.org/10.17308/kcmf.2024.26/11817
Section
Original articles