Stabilization of the Ba4Y3F17 phase in the NaF-BaF2-YF3 system
Abstract
The paper describes the study of the phase formation in the NaF-BaF2-YF3 system. It involved solid-phase sintering of the components in a fluorinating atmosphere at 750 °C for two weeks and quenching them in liquid nitrogen.
The prepared samples were placed in nickel capillaries, which, together with barium hydrofluoride, BaF2·HF, were placed in copper containers. The containers were sealed by argon arc welding. The fluorinating atmosphere was created by pyrolysis of barium hydrofluoride, BaF2·HF. X-ray powder diffraction was carried out using a Bruker D8 Advanced diffractometer (CuKa‑radiation). TOPAS, DifWin, and Powder 2.0 software were used to process X-ray diffraction patterns.
Sodium fluoride is a good sintering additive, its introduction in the amount of 5 mol % NaF was enough to synthesize sintered mass with clear X-ray diffraction patterns. The experiment revealed the formation of a solid solution based on the Ba4Y3F17 compound with a trigonally distorted fluorite structure (space group R-3) with a content of up to ~ 20 mol % of NaF. The parameters of the trigonal cell were related to the parameter а0 of the fluorite subcell by the ratios а ~ √7/2а0 and с ~2√3а0. The general formula for the resulting solid solution is Ba1-x-yYxNayF2+x-y. The introduction of sodium fluoride reduced the parameters of the trigonal lattice and was accompanied by the formation of anion vacancies. Structure stabilization
expressed in the expansion of the homogeneity region of the phase based on Ba4Y3F17 seems to be associated with the disappearance of interstitial fluorine ions surrounded by anions in the Ba4Y3F17 structure, both in the cuboctahedral cavity of the Y6F36 clusters and in the centre of the F8 cubes.
The corresponding solid solution can be used to create new photonics materials. The NaF-BaF2-YF3 system is similar to the previously studied NaF-BaF2-GdF3 system
Downloads
References
Tkachenko N. L., Shvantner M., Sobolev B. P. Phase diagram of the BaF2-YF3 system. Neorganicheskie materialy [Inorganic Materials]. 1977;13(5): 847–849. (In Russ).
Sobolev B. P., Tkachenko N. L. Phase diagrams of BaF2-(Y, Ln)F3 systems. Journal of the Less Common Metals. 1982;85: 155–170. https://doi.org/10.1016/0022-5088(82)90067-4
Sobolev B. P. The rare earth trifluorides. Part 1. The high temperature chemistry of the rare earth trifluorides. Barcelona: Institut d’Estudis Catalans;2000. 520 с.
Guggenheim H. J., Johnson L. F. New fluoride compounds for efficient infrared-to-visible conversion. Applied Physics Letters. 1969;15(2): 51-52. https://doi.org/10.1063/1.1652898
Kieser M., Greis O. Darstellung und Eigenschaften der Fluorituberstrukturhasen Ba4SE3F17 mit SE = Ce-Nd, Sm-Lu und Y. Zeitschrift für anorganische und allgemeine Chemie. 1980;469: 164–171. https://doi.org/10.1002/zaac.19804690123
Greis O., Kieser M. Electron diffraction from single crystals of Ba4Pr3F17, Ba4Nd3F17, Ba4Gd3F17 and Ba4Dy3F17. Journal of the Less Common Metals. 1980;75(1): 119–123. https://doi.org/10.1016/0022-5088(80)90376-8
Greis O., Haschke J. M. Rare earth fluorides. Handbook on the physics and chemistry of rare earths. K. A. Gschneidner & Le Roy Eyring (eds.). Amsterdam, N.Y., Oxford: 1982;5: 387–460. https://doi.org/10.1016/S0168-1273(82)05008-9
Maksimov B. A., Dudka A. P., Genkina E. A., … Golubev A. M. The fluorite-matrix-based Ba4R3F17 (R = Y,Yb) crystal structure. Ordering of cations and specific features of the anionic motif. Crystallography Reports. 1996;41(1): 50–57. Available at: https://elibrary.ru/item.asp?id=13237398
Tyagi F. K., Kohler J. Preparation and structural elucidation of new anion-excess fluorite variant Ba4Er3F17. Solid State Science. 2001;3: 689–695. https://doi.org/10.1016/S1293-2558(01)01167-0
Greis O., Uwais B. M., Horne W. Preparation and characterization of superstructure phases Pb4R3F17 with R = Sm, Gd and Er to Lu. Zeitschrift für anorganische und allgemeine Chemie. 1989;186: 104–107.
Dib A., Aleonard S. J. Structure cristalline de Pb8Y6F32O. Journal of Solid State Chemistry. 1986;64(2): 148–161. https://doi.org/10.1016/0022-4596(86)90134-9
Dombrovski E. N., Serov T. V., Abakumov A. M., Ardashnikova E.I., Dolgikh V.A., Van Tendeloo G. The structural investigation of Ba4Bi3F17. Journal of Solid State Chemistry. 2004;177(1): 312–318. https://doi.org/10.1016/j.jssc.2003.08.022
Kuznetsov S. V., Yarotskaya I. V., Fedorov P. P., … Osiko V. V. Preparation of nanopowdered M1- xRxF2+x (M = Ca, Sr, Ba; R = Ce, Nd, Er, Yb) solid solutions. Russian Journal of Inorganic Chemistry 2007;52(3): 315–320. https://doi.org/10.1134/s0036023607030035
Kuznetsov S. V., Fedorov P. P., Voronov V. V., Samarina K. S., Ermakov R. P., Osiko V. V. Synthesis of Ba4R3F17 (R stands for rare-earth elements) powders and transparent compacts on their base. Russian Journal of Inorganic Chemistry. 2010;55(4): 484–493. https://doi.org/10.1134/S0036023610040029
Fedorov Р. P., Mayakova M. N., Kuznetsov S. V., … Osiko V. V. Co-Precipitation of Yttrium and Barium Fluorides from Aqueous Solutions. Materials Research Bulletin. 2012;47: 1794–1799. https://doi.org/10.1016/j.materresbull.2012.03.027
Mayakova M. N., Voronov V. V., Iskhakova L. D., Kuznetsov S. V., Fedorov P. P. Low-temperature phase formation in the BаF2-CeF3 system. Journal of Fluorine Chemistry. 2016;187: 33–39. https://doi.org/10.1016/j.jfluchem.2016.05.008
Fedorov P. P., Mayakova M. N., Kuznetsov S. V., … Iskhakova L. D. Coprecipitation of barium-bismuth fluorides from aqueous solutions: Nanochemical effects. Nanotechnologies in Russia. 2011;6(3-4): 203-210. https://doi.org/10.1134/s1995078011020078
Zhang C., Ma P., Li C., … Lin J. Controllable and white upconversion luminescence in BaYF5 :Ln3+ (Ln =Yb, Er, Tm) nanocrystals. Journal of Materials Chemistry. 2011;21: 717–723. https://doi.org/10.1039/C0JM02948C
Lei Y., Pang M., Fan W., … Zhang H. Microwaweassisted synthesis of hydrophilic BaYF5:Tb/Ce,Tb green fluororescent colloid nanocrystals. Dalton Transactions. 2011;40: 142-145. https://doi.org/10.1039/C0DT00873G
Lei L., Chen D., Huang F., Yu Y., Wang Y. Syntheses and optical properties of monodisperse BaLnF5 (Ln = La-Lu, Y). Journal of Alloys and Compounds. 2012;540: 27–31. https://doi.org/10.1016/j.jallcom.2012.06.078
Karbowiak M., Cichos J. Does BaYF5 exist? – The BaF2-YF3 solid solution revisited using photoluminescence spectroscopy. Journal of Alloys and Compounds. 2016;673: 258–264. https://doi.org/10.1016/j.jallcom.2016.02.255
Ostwald W. Studien ueber die Bilding und Umwandlung fester Koerper. Zeitschrift für Physikalische Chemie. 1897;22: 289–330. https://doi.org/10.1515/zpch-1897-2233
Threifall T. Structural and thermodynamic explanations of Ostwald’s rule. Organic Process Research & Development. 2003;7(6): 1017–1027. https://doi.org/10.1021/op030026l
E. I., … Fedorov P. P. Down-conversion luminescence of Yb3+ in novel Ba4Y3F17:Yb:Ce solid solution by excitation of Ce3+ in UV spectral range. Optical Materials. 2020;108: 110185. https://doi.org/10.1016/j.optmat.2020.110185
Tomkus M., Natansohn S. J. Anti-Stocs phosphors in BaF2-RF3 systems. Journal of The Electrochemical Society. 1971;118(3): 70.
Johnsen L. F., Guggenheim H. J., Rich T. C., Ostermayer F. W. Infrared-to-visible conversions by rare-earth ions in crystals. Journal of Applied Physics. 1972; 43(3): 1125–1137. https://doi.org/10.1063/1.1661225
Rich T. C., Pinnow D. A. Exploring the ultimate efficiency in infrared-to visible converting phosphors activated with Er and sensitized with Yb. Journal of Applied Physics. 1972;43(5): 2357–2365. https://doi.org/10.1063/1.1661503
Xincren L., Gang X., Powell R. C. Fluorescence and energy-transfer characteristics of rare earth ions in BaYF5 crystals. Journal of Solid State Chemistry. 1986;62: 83–91. https://doi.org/10.1016/0022-4596(86)90219-7
Liu F., Wang Y., Chen D., … Huang P. Upconversion emission of a novel glass ceramic containing Er3+:BaYF5 nano-crystals. Materials Letters. 2007;61(28): 5022–5025. https://doi.org/10.1016/j.matlet.2007.03.089
Vetrone F., Mahalingam V., Capobianco J. H. Near-infrared-to blue upconversion in colloidal BaYF5:Tm3+,Yb3+ nanocrystals. Chemistry of Materials. 2009;21: 1847–1851. https://doi.org/10.1021/cm900313s
Shan Z., Chen D., Yu Y., … Wang Y. Upconversion luminescence of Ho3+ sensitized by Yb3+ in transparent glass ceramic embedding BaYF5 nanocrystals. Materials Research Bulletin. 2010;45(8): 1017–1020. https://doi.org/10.1016/j.materresbull.2010.04.004
Fedorov P., Mayakova M., Alexandrov A., … Ivanov V. The melt of sodium nitrate as a medium for the synthesis of fluorides. Inorganics. 2018;6(2):38. https://doi.org/10.3390/inorganics6020038
Alexandrov A. A., Petrova L. A., Pominova D. V., … Fedorov P. P. Novel fluoride matrix for dual-range optical sensors and visualization. Applied Sciences. 2023;13(18): 9999. https://doi.org/10.3390/app13189999
Fedorov P. P., Volkov S. V., Vaitieva Yu. A., Alexandrov A. A., Kuznetsov S. V., Konushkin V. A. Fluorite-like phases based on barium fluorides and rare-earth elements. Zhurnal strukturnoi khimii [Journal of Structural Chemistry]. 2024;65(5): 126843. (In Russ). https://doi.org/10.26902/JSC_id126843
Fedorov P. P., Alexandrov A. A., Voronov V. V., Mayakova M. N., Baranchikov A. E., Ivanov V. K. Lowtemperature phase formation in the SrF2 - LaF3 system. Journal of the American Ceramic Society. 2021;104(6): 2836-2848. https://doi.org/10.1111/jace.17666
Alexandrov A. A., Bragina A. G., Sorokin N. I., … Fedorov P. P. Low-temperature phase formation in the BaF2-LaF3 system. Neorganicheskie materialy [Inorganic Materials]. 2023;59(3): 306–316. (In Russ). https://doi.org/10.31857/S0002337X23030016
Sobolev B. P., Fedorov P. P. Phase diagramms of the CaF2 - (Y,Ln)F3 systems. I. Experimental. Journal of the Less Common Metals. 1978;60(1): 33-46. https://doi.org/10.1016/0022-5088(78)90087-5
Sobolev B. P., Seiranian K. B. Phase diagrams of systems SrF2–(Y,Ln)F3. II. Fusibility of systems and thermal behavior of phases. Journal of Solid State Chemistry. 1981;39(2): 337–344. https://doi.org/10.1016/0022-4596(81)90268-1
Fedorov P. P. Third law of thermodynamics as applied to phase diagrams. Russian Journal of Inorganic Chemistry. 2010;55(11): 1722–1739. https://doi.org/10.1134/s0036023610110100
Fedorov P.P. Heterovalent isomorphism and solid solutions with a variable number of ions in the unit cell. Russian Journal of Inorganic Chemistry. 2000;45(3):268–291. Available at: https://www.elibrary.ru/item.asp?id=13360696
Pavlova L. N., Fedorov P. P., Olkhovaya L. A., Ikrami D. D., Sobolev B. P. Ordering of the heterovalent solid solution of the fluorite structure in the NaF-BaF2-GdF3 system. Kristalografia [Crystallography Reports]. 1993;38(2): 164–169. (In Russ).
Copyright (c) 2024 Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.