Study of the thermal conductivity of natural carbonates

Keywords: Minerals, Marble, Calcite, Dolomite, Limestone, Siderite, Thermal conductivity, Phonon-defect scattering, Temperature dependence

Abstract

The thermal conductivity of natural monoliths of calcite, dolomite marble, and limestone from various deposits was measured using the absolute stationary method of longitudinal heat flow in the temperature range of 50–300 K and the dynamic method in the range of 323–573 K. A majority of calcite marbles were inferior in thermal conductivity to dolomite marbles. At room temperature, the thermal conductivity coefficients of all studied samples were lower k = 5 W/(m K).

The obtained data were compared with the literature data. The diversity of experimental data from different authors on the thermal conductivity of carbonates is associated with qualitative differences in the samples studied

Downloads

Download data is not yet available.

Author Biographies

Pavel A. Popov, Bryansk State Academician I. G. Petrovski University, 14, Bezhitskaya str., Bryansk 241036, Russian Federation

Dr. Sci. (Phys.–Math.), Professor,
Bryansk State Academician I. G. Petrovski University
(Bryansk, Russian Federation)

Alena A. Zentsova, Bryansk State Academician I. G. Petrovski University, 14, Bezhitskaya str., Bryansk 241036, Russian Federation

student, Bryansk State
Academician I. G. Petrovski University (Bryansk,
Russian Federation)

Ivan A. Novikov, Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilova str., Moscow 119991, Russian Federation

Researcher, Prokhorov General
Physics Institute of the Russian Academy of Sciences
(Moscow, Russian Federation)

Valery V. Voronov, Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilova str., Moscow 119991, Russian Federation

Cand. Sci. (Phys.–Math.),
Leading Researcher, Prokhorov General Physics
Institute of the Russian Academy of Sciences (Moscow,
Russian Federation)

Elena V. Chernova, Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilova str., Moscow 119991, Russian Federation

Junior Researcher, Prokhorov
General Physics Institute of the Russian Academy of
Sciences (Moscow, Russian Federation)

Pavel P. Fedorov, Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilova str., Moscow 119991, Russian Federation

Dr. Sci. (Chem.), Full Professor,
Chief Researcher, Prokhorov General Physics Institute
of the Russian Academy of Sciences (Moscow, Russian
Federation)

References

Birch F., Clark H. The thermal conductivity of rocks and its dependence upon temperature and composition. American Journal of Science. 1940;238(8): 529–558. https://doi.org/10.2475/ajs.238.8.529

Clark H. The effects of simple compression and wetting on the thermal conductivity of rocks. American Geophysical Union Transactions. 1941;22: 543–544. https://doi.org/10.1029/TR022i002p00543

Zierfuss H., Vliet van der G. Measurement of heat conductivity of sedimentary rocks. American Association of Petroleum Geologists Bulletin. 1956;40: 2475–2488. https://doi.org/10.1306/5CEAE5A4-16BB-11D7-8645000102C1865D

Zierfuss H. Heat conductivity of some carbonate rocks and clayey sandstones. American Association of Petroleum Geologists Bulletin. 1969;53: 251–260. https://doi.org/10.1306/5D25C607-16C1-11D7-8645000102C1865D

Meincke W. , Hurtig E. , and Weiner J. Temperatumerteilung, Warmeleitfahigkeit und Warmefluss in Thuringer Becken. Geophysik und Geologic. 1967;(11): 40–71.

Ki-iti Horai. Thermal conductivity of rockforming minerals. Journal of Geophysical Research. 1971;76(5): 1278–1308. https://doi.org/10.1029/jb076i005p01278

Beck A. E., Anglin F. M., Sass, J. H. Analysis of heat f low data-in situ thermal conductivity measurements. Canadian Journal of Earth Sciences. 1971;8: 1–19. https://doi.org/10.1139/e71-001

Thomas J., Jr. Frost R. R., Harvey R. D. Thermal conductivity of carbonate rocks Engineering Geology. 1973;7(4): 3–12. https://doi.org/10.1016/0013-7952(73)90003-3

Robertson E. C. Thermal properties of rocks. Open-File Report. 1988; 88–441. Reston, Virginia. https://doi.org/10.3133/ofr88441

Shin K., Kinoshita N., Okuno T. Mechanical, thermal properties and permeability of rocks under high temperature. Journals Free Access. 1988;29(3):242–253. https://doi.org/10.5110/jjseg.29.242

Garcı´a E., de Pablos A., Bengoechea M. A., Guaita L., Osendi M. I., Miranzo P. Thermal conductivity studies on ceramic floor tiles. Ceramics International. 2011;37(1): 369–375. https://doi.org/10.1016/j.ceramint.2010.09.023

Clauser C., Huenges E. Thermal Conductivity of Rocks and Minerals. In: Rock Physics and Phase Relations: a Handbook of Physical Constants. Ed.Ahrens T. J. 1995;3: 105–126 (print). American Geophysical Union, 2013 (on line). https://doi.org/10.1029/rf003p0105

Emirov S. N., Ibragimov A. I., Ramazanova E. N. Thermal properties of sedimentary rocks in the conditions of their natural occurrence. Scientific and methodological electronic journal concept. 2013;13: 1096–1100. (In Russ., abstact in Eng.). Available at:https://e-koncept.ru/2013/53222.htm

Merriman J. D., Hofmeister A. M., Roy D. J., Whittington A. G. Temperature-dependent thermal transport properties of carbonate minerals and rocks. Geosphere. 2018;14(4): 1961–1987. https://doi.org/10.1130/GES01581.1

Semenov V. P., Zheleznyak M. N., Kirillin A. R., Zhizhin V. I. Thermal conductivity of sedimentary rocks in the eno-Viluy oil-and-gas bearing province. Earth’s Cryosphere. 2018;22(5): 30–38. (In Russ., abstact in Eng.). https://doi.org/10.21782/KZ1560-7496-2018-5(30-38)

Lindawati L., Yuliza N. F., Irwansyah I. Thermal Conductivity of Some Marble Stones Available in South Aceh District. IOP Conf. Series: Materials Science and Engineering. 2020;854: 012064. https://doi.org/10.1088/1757-899x/854/1/012064

Momenzadeh L., Moghtaderi B., Liu X., Sloan S. W., Belova I. V., Murch G. E. The thermal conductivity of magnesite. Dolomite and calcite as determined by molecular dynamics simulation. Diffusion Foundations. 2018;19: 18–34. https://doi.org/10.4028/www.scientific.net/DF.19.18

Popov P. A., Dukel’skiǐ K. V., Mironov I. A., Smirnov A. N., Smolyanskii P. L., Fedorov P. P., Osiko V. V. Basiev T. T. Thermal conductivity of CaF2 optical ceramic. Doklady Physics. 2007; 52(1): 7–9. https://doi.org/10.1134/s1028335807010028

Popov P. A., Fedorov P. P., Kuznetsov S. V. Thermal conductivity of FeS2 pyrite crystals in the temperature range 50–300 K. Crystallography Reports.2013; 58(2): 319–321. https://doi.org/10.1134/s1063774513020223

Fedorov P. P., Maslov V. А., Voronov V. V., Chernova E. V., Yarotskaya E. G., Gaynutdinov R. V., Popov P. A. Flintstone as nanocomposite material. Nanosystems: Physics, Chemistry, Mathematics. 2018;9(5): 603–608. https://doi.org/10.17586/2220-8054-2018-9-5-603-608

Popov P. A., Kuznetsov S. V., Krugovykh A. A., Mitroshenkov N. V., Balabanov, S. S., Fedorov P. P. Study of the thermal conductivity of PbS, CuFeS2, ZnS. Condensed Matter and Interphases. 2020;22(1): 97–105. https://doi.org/10.17308/kcmf.2020.22/2533

Fedorov P. P., Novikov I. A., Voronov V. V., Bad’yanova L. V., Kuznetsov S. V., Chernova E. V. Transformation of siderite in the zone of hypergenesis. Nanosystems: Physics, Chemistry, Mathematics. 2022;13(5): 539–545. https://doi.org/10.17586/2220-8054-2022-13-5-539-545

Popov P. A., Sidorov А. А., Kul’chenkov Е. А., Аnishchenko А. М., Аvetissov I. Ch., Sorokin N. I., Fedorov P. P. Thermal conductivity and expansion of PbF2 single crystal. Ionics. 2017;23(1): 233–239. https://doi.org/10.1007/s11581-016-1802-2

Goldsmith J. R., Heard H. C. Subsolidus phase relations in the system CaCO3–MgCO3. Journal of Geology. 1961; 69(1): 45–74. https://doi.org/10.1086/626715

Vinn O. Calcite in skeletons of annelids. In: Calcite: formation, properties and applications. NOVA Science Publ.; 2012. p. 245.

Oskotsky V. S., Smirnov I. A. Defects in crystals and thermal conductivity. Moscow: Nauka Publ.; 1972. 159 p. (In Russ.)

Ziman J. M. Electrons and phonons. The theory of transport phenomena in solids. Clarendon Press; 1960. 554 p.

Thermal conductivity of solids: Handbook. Ed.: A. S. Okhotina. Moscow: Energoatomizdat Publ.; 1984. 320 p.

Klemens P. G. The thermal conductivity of dielectric solids at low temperatures (Theoretical). Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences. 1951;208(1092): 108–133. https://doi.org/10.1098/rspa.1951.0147

Berman R. Thermal conduction in Solids Oxford: Clarendon; 1976. 193 p.

Popov P. A., Fedorov P. P. Thermal conductivity of fluoride optical materials. Bryansk: Group of companies “Desyatochka” Publ.; 2012. 210 p. (In Russ.)

Published
2024-01-31
How to Cite
Popov, P. A., Zentsova, A. A., Novikov, I. A., Voronov, V. V., Chernova, E. V., & Fedorov, P. P. (2024). Study of the thermal conductivity of natural carbonates. Condensed Matter and Interphases, 26(1), 127-134. https://doi.org/10.17308/kcmf.2024.26/11816
Section
Original articles