Structure and electrical transport properties of cation-deficient derivatives of layered neodymium–barium ferrocuprocobaltite
Abstract
Layered double perovskites (LDP) based on rare earth elements, barium, and 3d-metals with high electrical conductivity and electrocatalytic activity in the oxygen reduction reaction are promising cathode materials for medium-temperature solid oxide fuel cells based on proton- or oxygen-conducting solid electrolytes. For the improvement of the functional characteristics of LDP, various strategies are used: a) creating composites based on LDP, b) the partial substitution of cations, and c) the creation of a deficiency of cations in various positions in the LDP structure. The advantage of the latter strategy is that it does not require complicating the chemical and, as a rule, phase composition of the LDP. The purpose of this study was the investigation of the effect of neodymium and barium deficiency on the structural and electrical transport characteristics of NdBaFeCo0.5Cu0.5O6–d LDP.
The samples were obtained by the ceramic method and characterized using X-ray phase analysis, IR absorption spectroscopy, iodometry, electron microscopy, thermal analysis, as well as electrical conductivity and thermo-EMF measurements methods.
Creation of up to 10 mol. % of vacancies in neodymium or barium sublattices had little effect on the values of the oxygen nonstoichiometry index (d) and unit cell parameters of NdBaFeCo0.5Cu0.5O6–d derivatives. owever, it led to an increase in the crystallite size (determined by the Scherrer, Williamson–Hall and size–strain methods) and the thermal stability of these phases. The values of electrical conductivity and the Seebeck coefficient of ceramics, in general, increased, and the activation energies of the electrical transfer process decreased when a deficiency of neodymium or barium was created in its structure. In the temperature range 300–700 K, the weighted mobility of charge carriers (“holes”) varied within 0.04–0.8
cm2/(V·s) and increased with increasing temperature, which is typical for the polaron conduction mechanism, and their concentration varied in the range (0.1–3)·1020 cm–3, increased exponentially with increasing temperature and, in general, when a deficiency of neodymium or barium in the NdBaFeCo0.5Cu0.5O6–d structure was created
Downloads
References
Jacobson A. J. Materials for solid oxide fuel cells. Chemistry of Materials. 2010;22(3): 660–670. https://doi.org/10.1021/cm902640j
Afroze S., Karim A. H., Cheok Q., Eriksson S., Azad A. K. Latest development of double perovskite electrode materials for solid oxide fuel cells: a review. Frontiers in Energy. 2019;13: 770–797. https://doi.org/10.1007/s11708-019-0651-x
Klyndyuk A. I., Chizhova E. A., Kharytonau D. S., Medvedev D. A. Layered oxygen-deficient double perovskites as promising cathode materials for solid oxide fuel cells. Materials. 2022;15(1): 141. https://doi.org/10.3390/ma15010141
Kumar R. М., Khandale A. P. A review on recent progress and selection of cobalt-based cathode materials for low temperature solid oxide fuel cells. Renewable and Sustainable Energy Reviews. 2022;156: 111985. https://doi.org/10.1016/j.rser.2021.111985
Zeng C., Zhan B., Butt S., … Nan C.–W. Electrical and thermal conduction behaviors in La-substituted GdBaCuFeO5+d ceramics. Journal of American Ceramic Society. 2015;98(10): 3179–3184. https://doi.org/10.1111/jace.13728
Tsvetkov D. S., Ivanov I. L., Malyshkin D. A., Sednev A. L., Sereda V. V., Zuev A. Yu. Double perovskites REBaCo2–xMxO6–d (RE = La, Pr, Nd, Eu, Gd, Y; M = Fe, Mn) as energy-related materials: an overview. Pure and Applied Chemistry. 2019;19(6): 923–940. https://doi.org/10.1515/pac-2018-1103
Kaur P., Singh K. Review of perovskite-structure related cathode materials for solid oxide fuel cells. Ceramics International. 2020;46: 5521–5535. https://doi.org/10.1016/j.ceramint.2019.11.066
Istomin S. Ya., Lyskov N. V., Mazo G. N., Antipov E. V. Electrode materials based on complex d-metal oxides for symmetrical solid oxide fuel cells. Russian Chemical Reviews. 2021;90(6): 644–676. https://doi.org/10.1070/RCR4979
Su Ch., Wang W., Shao Z. Cation-deficient perovskites for clean energy conversion. Account of Materials Research. 2021;2: 477–488. https://doi.org/10.1021/accountsmr.1c00036
Jiang X., Shi Y., Zhou W., … Jiang L. Effects of Pr3+-deficiency on structure and properties of PrBaCo2O5+d cathode material – A comparison with Ba2+-deficiency case. Journal of Power Sources. 2014;272: 371–377. https://doi.org/10.1016/j.jpowsour.2014.08.091
Yi K., Sun L., Li Q., … Grenier J.-C. Effect of Nd-deficiency on electrochemical properties of NdBaCo2O6–d cathode for intermediate-temperature solid oxide fuel cell. International Journal of Hydrogen Energy. 2016;41: 10228–10238. https://doi.org/10.1016/j.ijhydene.2016.04.248
Jiang X., Xu Q., Shi Y., … Zhang Q. Synthesis and properties of Sm3+-deficient Sm1–xBaCo2O5+d perovskite oxides as cathode materials. International Journal of Hydrogen Energy. 2014;39: 10817–10823. http://dx.doi.org/10.1016/j.ijhydene.2014.04.203
Pang S. L., Jiang X. N., Li X. N., … Zhang Q. Y. Structure and properties of layered-perovskite LaBa1–xCo2O5+d (x = 0–0.15) as intermediatetemperature cathode material. Journal of Power Sources. 2013;240: 54–59. https://doi.org/10.1016/j.jpowsour.2013.04.005
Pang S., Jiang X., Li X., Wang Q., Su Z. Characterization of Ba-deficient PrBa1–xCo2O5+d as cathode material for intermediate temperature solid oxide fuel cells. Journal of Power Sources. 2012;204: 53–59. https://doi.org/10.1016/j.jpowsour.2012.01.034
Wang J., Meng F., Xia T., … Grenier J.-C. Superior electrochemical performance and oxygen reduction kinetics of layered perovskite PrBaxCo2O5+d (x = 0.90–1.00) oxides as cathode materials for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy. 2014;39: 18392–18404. http://dx.doi.org/10.1016/j.ijhydene.2014.09.041
Pang S., Wang W., Chen T., … Fan J. The effectof potassium on the properties of PrBa1–xCo2O5+d (x = 0.00–0.10) cathodes for intermediate-tenperature solid oxide fuel cells. International Journal of Hydrogen Energy. 2016;41: 13705–13714. http://dx.doi.org/10.1016/j.ijhydene.2016.05.0460
Donazzi A., Pelosato R., Cordaro G., Stucchi D., Cristiani C., Dotelli G., Sora N. Evaluation of Ba deficient NdBaCo2O5+d oxide as cathode material for IT-SOFC. Electrochimica Acta. 2015;182: 573–587. https://doi.org/10.1016/j.electacta.2015.09.117
Cordaro G., Donazzi A., Pelosato R., … Dotelli G. Structural and electrochemical characterization of NdBa1–xCo2–yFeyO5+d as cathode for intermediate temperature solid oxide fuel cells. Journal of Electrochemical Society. 2020;167: 024502. https://10.1149/1945-7111/ab628b
Kim C. G., Woo S. H., Song K. E., … Kim J. H. Enhanced electrochimical properties of nonstoichiometric layered perovskites, Sm1–xBaCo2O5+d, for IT-SOFC cathodes. Frontiers in Chemistry. 2021;9: 633863. https://doi.org/10.3389/fchem.2021.633868
Zhang L., Li Sh., Sun L., Huo L., Zhao H. Codeficient PrBaCo2–xO6–d perovskites as cathode materials for intermediate-temperature solid oxide fuel cells: enhanced electrochemical performance and oxygen reduction kinetics. International Journal of Hydrogen Energy. 2018;43: 3761–3775. https://doi.org/10.1016/j.ijhydene.2018.01.018
Klyndyuk A. I., Chizhova E. A. Structure and electrical and transport properties of cation-deficient samples of perovskite ferrocuprates RBaCuFeO5+d (R = Y, La). Physics of the Solid State. 2008;50(4): 603–608. https://doi.org/10.1134/S1063783408040021
Klyndyuk A. I., Chizhova E. A. Effect of cation deficiency on the structure and properties of layered lanthanum barium ferrocuprate. Russian Journal of Inorganic Chemistry. 2008;53(4): 524–529. https://doi.org/10.1134/S0036023608040074
Klyndyuk А. I., Kharytonau D. S., Mosiałek M., … Zimowska M. Double substituted NdBa(Fe,Co,Cu)2O5+d layered perovskites as cathode materials for intermediate-temperature solid oxide fuel cells –correlation between structure and electrochemical properties Electrochimica Acta. 2022;411: 140062 https://doi.org/10.1016/j.electacta.2022.140062
Klyndyuk A. I., ZhuravlevaYa. Yu., Gundilovich N. N., Chizhova E. A. Structural, thermal, and electrical properties of solid solutions in the NdBaFeCo0.5Cu0.5O5+d–NdSrFeCo0.5Cu0.5O5+d system. Inorganic Materials. 2023;59(1): 86–92. https://doi.org/10.1134/S0020168523010089
Klyndyuk A. I., ZhuravlevaYa. Yu. Structure and physico chemical properties of NdBa1–xCaxFeCo0.5Cu0.5O5+d solid solutions (0.00 ≤ x ≤ 0.40). Russian Journal of Inorganic Chemistry. 2022;67(12):2084–2089. https://doi.org/10.1134/S0036023622601404
Goryachko A. I., Ivanin S. N., Buz’ko V. Yu. Synthesis, microstructural and electromagnetic characteristics of cobalt-zinc ferrite. Condensed Matter and Interphases. 2020;22(4): 446–452. https://doi.org/10.17308/kcmf.2020.22/3115
Nikam C. U., Kadam S. R., Shotole R. S., … Kale G. H. Williamson–Hall and size strain plot based micro-structural analysis and evaluation of elastic properties of Dy3+ substituted Co–Zn nano-spinels. Journal of Physics: Conference Series. 2023;2426: 012029. https://doi.org/10.1088/1742-6596/2426/1/012029
Snyder G. J., Snyder A. H., Wood M., Gurunathan R., Snyder B. H., Niu C. Wighted mobility. Advanced Materials. 2020;35: 2001537. https://doi.org/10.1002/adma.202001537
Atanassova Y. K., Popov V. N., Bogachev G. G., … Pissas M. Raman- and infrared active phonons in YBaCuFeO5: experimental and lattice dynamics. Physical Review B. 1993;47: 15201–15207. https://doi.org/10.1103/PhysRevB.47.15201
Mott N., Davis E. Electronic processes in noncrystalline materials. 2nded. New York, USA, Oxford: Oxford University Press; 1979. 590 p.
Copyright (c) 2024 Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.