Behavior of major and minor elements during directional crystallization of Fe-Ni-Cu-S-(Rh, Ru, Ir, Pt, Pd, Ag, Au) melt

  • Elena F. Sinyakova V. S. Sobolev Institute of Geology and Mineralogy Siberian Branch Russian Academy of Sciences pr. Akademika Koptyuga 3, Novosibirsk, 630090, Russian Federation https://orcid.org/0000-0001-6288-3425
  • Konstantin A. Kokh V. S. Sobolev Institute of Geology and Mineralogy Siberian Branch Russian Academy of Sciences pr. Akademika Koptyuga 3, Novosibirsk, 630090, Russian Federation https://orcid.org/0000-0003-1967-9642
Keywords: Cu-Fe-Ni-S system, Phase equilibria, Noble metals, Directional crystallization, DTA

Abstract

The Cu-Fe-Ni-S system is unique in terms of the number of crystalline phases with a variety of combinations of properties, which makes it relevant for prospective material studies. The phases of this system compose typical associations of massive zonal sulfide Cu-Ni ores, and their copper-rich zones are characterized by a high content of noble metals. Therefore, this system is among the most important of those used for the geochemistry of sulfides and for the metallurgy of copper and nickel. There is insufficient quantitative information on the equilibrium distribution coefficients of macrocomponents and the behavior of impurities upon crystallization of solid solutions in the region of the solid-melting diagram corresponding to natural ores or intermediate products of metallurgical production. Therefore, the goal of the work was to obtain new data on the phase diagram of the Cu-Fe-Ni-S system and corresponding phases of noble metals (Rh, Ru, Ir, Pt, Pd, Ag, Au) during the process of fractional crystallization of the melt simulating zonal copper-rich ores of platinum-copper-nickel sulfide deposits.

We conducted quasi-equilibrium directional crystallization of the melt with a composition of (at. %): Fe 29.20, Ni 5.85, Cu 17.60, S 47 with addition of 0.05% of Rh, Ru, Ir, Pt, Pd, Ag, and Au. The obtained sample was studied using optical and scanning electron microscopy, energy-dispersive spectrometry (SEM/EDS), and X-ray phase analysis. Differential thermal analysis (DTA) was used to determine the liquidus temperatures along the crystallization path.

The distribution of macrocomponents along the cylindrical ingot showed that it consisted of five primary zones. Primary phases and phase associations crystallized from the melt in the following sequence: mss / mss + iss / iss / iss + bnss / bnss + pnss, where mss is monosulfide solid solution (FexNi1-x)S1±y, iss is intermediate solid solution (Cu,Fe)S1-x, bnss is bornite solid solution Cu5±xFe1±xS4±y, and pnss is pentlandite solid solution (FexNi1–x)9±yS8. This indicated a complex structure of the solid-melting diagram in the studied region. We determined the crystallization temperatures of mss and iss. A new type of secondary (phase) zoning was identified, formed as a result of subsolidus transformations of primary phases, which can be present in Cu-Ni sulfide ores. It was found that impurities can dissolve in the main sulfide phases, form individual microphases in the sulfide matrix, or be present in these microphases in the form of solid solutions. The main concentrators of Pd were pn and sug. Ir, Rh, and Ru were distributed between mss and pn, and Ag preferred bnss. Most impurities of noble metals formed inclusions as independent microphases: RuS2, Pt3Fe, Au* gold-based alloy, Pt-Fe-Au alloy, CuIr2S4, and native Ag. The results of the work showed that the behavior of macrocomponents could be described using distribution coefficients, and the behavior of microcomponents did not strictly correspond to the classical theory of fractional crystallization of multicomponent melts with impurities

Downloads

Download data is not yet available.

Author Biographies

Elena F. Sinyakova, V. S. Sobolev Institute of Geology and Mineralogy Siberian Branch Russian Academy of Sciences pr. Akademika Koptyuga 3, Novosibirsk, 630090, Russian Federation

Dr. Sci. (Geol.-Min.), Leading Research Fellow, V. S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences (Novosibirsk, Russian Federation)

Konstantin A. Kokh, V. S. Sobolev Institute of Geology and Mineralogy Siberian Branch Russian Academy of Sciences pr. Akademika Koptyuga 3, Novosibirsk, 630090, Russian Federation

Dr. Sci. (Geol.-Min.), Leading Research Fellow, V. S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences (Novosibirsk, Russian Federation)

References

Craig J. R., Kullerud G. Phase relations in the Cu–Fe–Ni–S system and their application to magmatic ore deposits. Economic Geology Monograph / Ed. H.D.B. Wilson. 1969;4: 344–358. https://doi.org/10.5382/Mono.04.25

Fleet M. E., Chryssoulis S. L., Stone W. E., Weisener C. G. Partitioning of platinum-group elements and Au in the Fe–Ni–Cu–S system: experiments on the fractional crystallization of sulfide melt. Contributions of Mineralogy and Petrology. 1993;115: 36–44. https://doi.org/10.1007/BF00712976

Fleet M. E., Pan Y. Fractional crystallization of anhydrous sulfide liquid in the system Fe–Ni–Cu–S, with application to magmatic sulfide deposits. Geochimica et Cosmochimica Acta. 1994;58: 3369–3377. https://doi.org/10.1016/0016-7037(94)90092-2

Ebel D. S., Naldrett A. J. Crystallization of sulfide liquids and interpretation of ore composition. Canadian Journal of Earth Sciences. 1977;34: 352–356. https://doi.org/10.1139/e17-031

Дистлер В. В., Гроховская Т. Л., Евстигнеева Т. Л. и др. Петрология сульфидного магматического рудообразования. М.: Наука; 1988, 230 c.

Ballhaus C., Tredoux M., Spath A. Phase relations in the Fe-Ni-Cu-PGE-S system at magmatic temperature and application to massive sulphide ores of the Sudbery igneous complex. Journal of Petrolology. 2001;42(10): 1911–1926. https://doi.org/10.1093/petrology/42.10.1911

Naldrett A. J. Magmatic sulfide deposits. Geology, geochemistry and exploration. Springer-Verlag, Heidelberg, Germany; 2004, 727 p.

Fleet M. E. Phase equilibria at high temperature. Reviews in Mineralogy and Geochemistry. 2006;61: 365–419. https://doi.org/10.2138/rmg.2006.61.7

Cafagna F., Jugo P. J. An experimental study on the geochemical behavior of highly siderophile elements (HSE) and metalloids (As, Se, Sb, Te, Bi) in a mss-iss-pyrite system at 650 oC: a possible magmatic origin for Co-HSE-bearing pyrite and the role of metalloid-rich phases in the fractionation of HSE. Geochimica et Cosmochimica Acta. 2016;178: 233–258. https://doi.org/10.1016/j.gca.2015.12.035

Helmy H. M., Botcharnikov R., Ballhaus C., … Hager T. Evolution of magmatic sulfide liquids: how and when base metal sulfides crystallize? Contributions of Mineralogy and Petrology. 2021;176: 1–15. https://doi.org/10.1007/s00410-021-01868-4

Kullerud G., Yund R. A., Moh G. H. Phase relations in the Cu–Fe–S, Cu–Ni–S, and Fe–Ni–S systems. Economic Geology Monograph. 1969;4: 323–343.

Sugaki A., Kitakaze A. High form of pentlandite and its thermal stability. American Mineralogist. 1998;83(1–2): 133–140. https://doi.org/10.2138/am-1998-1-213

Cabri L. J. New phase relations in the Cu-Fe-S system. Economic Geology.1973;68(4): 443–454. https://doi.org/10.2113/gsecongeo.68.4.443

Peregoedova A., Ohnenstetter M. Collectors of Pt, Pd and Rh in a S-poor Fe–Ni–Cu sulfide system at 760°C: experimental data and application to ore deposits. The Canadian Mineralogist. 2002;40: 527–561. https://doi.org/10.2113/gscanmin.40.2.527

Kosyakov V. I., Sinyakova E. F. Melt crystallization of CuFe2S3 in the Сu–Fe–S system. Journal of Thermal Analysis and Calorimetry. 2014;115(1): 511–516. https://doi.org/10.1007/s10973-013-3206-0

Sinyakova E. F., Vasilyeva I. G., Oreshonkov A. S., Goryainov S. V., Karmanov N. S. Formation of noble metal phases (Pt, Pd, Rh, Ru, Ir, Au, Ag) in the process of fractional crystallization of the CuFeS2 melt. Minerals. 2022;12(9): 1136. https://doi.org/10.3390/min12091136

Tolstykh N., Brovchenko V., Rad’ko V., Shapovalova M., Abramova V., Garcia J. Rh, Ir and Ru partitioning in the Cu-poor IPGE massive ores, Talnakh intrusion, Skalisty mine, Russia. Minerals. 2022;11:18. https://doi.org/10.3390/min12010018

Mungall J. E. Crystallization of magmatic sulfides: an empirical model and application to Sudbury ores. Geochimica et Cosmochimica Acta. 2007;71(11): 2809–2819. https://doi.org/10.1016/j.gca.2007.03.026

Dare S. A. S., Barnes S.-J., Prichard H. M., Fisher P. C. Mineralogy and geochemistry of Cu-Rich ores from the McCreedy East Ni-Cu-PGE deposit (Sudbury, Canada): implications for the behavior of platinum group and chalcophile elements at the end of crystallization of a sulfide liquid. Economic Geology. 2014;109(2): 343–366. https://doi.org/10.2113/econgeo.109.2.343

Barnes S.-J., Ripley E. M. Highly siderophile and strongly chalcophile elements in magmatic ore deposits. Reviews in Mineralogy and Geochemistry. 2016;81: 725–774. https://doi.org/10.2138/rmg.2016.81.12

Duran, C. J., Barnes S. J., Plese P., Kudrna Prašek M., Zientek M. L., Pagé P. Fractional crystallization-induced variations in sulfides from the Noril’sk-Talnakh mining district (Polar Siberia, Russia). Ore Geology Review. 2017;90: 326–351. https://doi.org/10.1016/j.oregeorev.2017.05.016

Liu, Y., Brenan J., Partitioning of platinum-group elements (PGE) and chalcogens (Se, Te, As, Sb, Bi) between monosulfide-solid solution (MSS), intermediate solid solution (ISS) and sulfide liquid at controlled conditions. Geochimica et Cosmochimica Acta. 2015;159: 139–161. https://doi.org/10.1016/j.gca.2015.03.021

Hawley J. E. The Sudbury ores: their mineralogy and origin. The Canadian Mineralogist. 1962;7(1): 1–207.

Naldrett A. J., Ebel D. S., Asif M., Morrison G., Moore C. M. Fractional crystallization of sulfide melts as illustrated at Noril’sk and Sudbury. European Journal of Mineralogy. 1997;9: 365–377. https://doi.org/10.1127/ejm/9/2/0365

Barnes S-J., Cox R. A., Zientek M. L. Platinum-group element, gold, silver and base metal distribution in compositionally zoned sulfide droplets from the Medvezky Creek mine, Noril’sk, Russia. Contributions of Mineralogy and Petrology. 2006;152: 187–200. https://doi.org/10.1007/s00410-006-0100-9

Holwell D. A., McDonald I. A review of the behavior of platinum group elements within natural magmatic sulfide ore systems. Platinum Metals Review. 2010;54: 26–36. https://doi.org/10.1595/147106709x480913

Kosyakov V. I., Sinyakova E. F., Distler V. V. Experimental simulation of phase relationships and zoning of magmatic nickel–copper sulfide ores, Russia. Geology of Ore Deposits. 2012;54: 179–208. (In Russ., abstract in Eng.). https://doi.org/10.1134/S1075701512030051

Sinyakova E. F., Kosyakov V. I., Borisenko A. S., Karmanov N. S. Behavior of noble metals during fractional crystallization of Cu–Fe–Ni–(Pt, Pd, Rh, Ir, Ru, Ag, Au, Te) sulfide melts. Russian Geology and Geophysics. 2019; 60(6): 642–651. https://doi.org/10.15372/RGG2019050

Sinyakova E. F., Kosyakov V. I., Kokh K. A., Naumov E. A. Sequential crystallization of pyrrhotite, cubanite and intermediate solid solution from Cu-Fe-(Ni)-S melt. Russian Geology and Geophysics. 2019;60(11): 1257–1267. https://doi.org/10.15372/rgg2019091

Kosyakov V. I., Sinyakova E. F., Kokh K. A. Sequential crystallization of four phases from melt on the polythermal section of the Cu–Fe–Ni–S system. Journal of Thermal Analysis and Calorimetry. 2020;139(6): 3377–3382. https://doi.org/10.1007/s10973-019-08701-y

Kosyakov V. I., Sinyakova E. F. Physicochemical prerequisites for the formation of primary orebody zoning at copper-nickel sulfide deposits (by the example of the systemsFe–Ni–SandCu–Fe–S). Russian Geology and Geophysics. 2012;53(9): 861–882. https://doi.org/10.1016/j.rgg.2012.07.003

Kosyakov V. I. Possible usage of directional crystallization for solving petrological problems. Russian Geology and Geophysics. 1998;39(9): 1245–1256.

Sinyakova E. F., Kosyakov V. I. Experimental modeling of zonality of copper-rich sulfide ores in copper–nickel deposits. Doklady Earth Sciences. 2009;427: 787–792. https://doi.org/10.1134/S1028334X0709019X

Schlegel H., Sehüller A. Das Zustandebild Kupfer-Eisen-Schwefel. Zeitschrift für Metallkunde. 1952;43(12): 421–428.

Greig J. W., Jensen E., Merwin H. E. The system Сu-Fe-S. Carnegie Institution of Washington Year Book. 1955;54: 129–134.

Fleet M. E., Chryssoulis S. L., Stone W. E., Weisener C. G. Partitioning of platinum-group elements and Au in the Fe–Ni–Cu–S system: experiments on the fractional crystallization of sulfide melt. Contributions of Mineralogy and Petrology. 1993;115: 36–44. https://doi.org/10.1007/bf00712976

Li C., Barnes S.-J., Makovicky E. et al. Partitioning of nickel, cooper, iridium, rhenium, platinum, and palladium between monosulfide solid solution and sulfide liquid: Effects of composition and temperature. Geochimica et Cosmochimica Acta. 1996;60(7): 1231–1238. https://doi.org/10.1016/0016-7037(96)00009-9

Barnes S.-J., Makovicky E., Makovicky M., Rose-Hansen J., Karup-Moller S. Partition coefficients for Ni, Cu, Pd, Pt, Rh and Ir between monosulfide solid solution and sulfide liquid and the formation of compositionally zoned Ni-Cu sulphide bodies by fractional crystallization of sulfide liquid. Canadian Journal of Earth Sciences. 1997;34: 366–374. https://doi.org/10.1139/e17-032

Mungall J. E., Andrews D. R. A., Cabri L. J., Sylvester P. J., Tuberett M. Partitioning of Cu, Ni, Au, and platinum-group elements between monosulfide solid solution and sulfide melt under controlled oxygen and sulfur fugacities. Geochimica et Cosmochimica Acta. 2005;64(17): 4349–4360. https://doi.org/10.1016/j.gca.2004.11.025

Simon G., Kesler S. E., Essene E. J., Chryssoulis S. L. Gold in porphyry copper deposits: experimental determination of the distribution of gold in the Cu-Fe-S system at 400 to 700 °C. Economic Geology. 2000;95: 259–270. https://doi.org/10.2113/gsecongeo.95.2.259

Kolonin G. R., Fedorova Zh. N., Kravchenko T. A. Influence of the composition of phase associations of the Cu-Fe-S system on the mineral forms of rhodium (according to experimental data)*. Doklady of the Academy of Sciences. 1994;337(1): 104–107. (In Russ.)

Sinyakova E. F., Kosyakov V. I. Experimental modeling of zoning in copper-nickel sulfide ores. Doklady Earth Sciences. 2007;417A(9): 1380–1385. https://doi.org/10.1194/S1028334X0709019X

Sinyakova E. F., Komarov V. Yu, Sopov K. V., Kosyakov V. I., Kokh K. A. Crystallization of pyrrhotite from Fe-Ni-Cu-S-(Rh, Ru) melt. Journal of Crystal Growth. 2020;548: 125822. https://doi.org/10.1016/j.jcrysgro.2020.125822

Massalski T. B., Okamoto H., Subramanian P. R., Kacprzak L. Binary Alloy Phase Diagrams. Second Edition. Ohio, United States: ASM International, Materials Park; 1990. 3589 p.

Ternary alloy systems. Noble metal systems. Selected systems from Ag-Al-Zn to Rh-Ru-Sc. In: Landolf-Börnstein – Group IV. Physical Chemistry. G. Effenberg & S. Ilyenko (eds.). 2006;11B. https://doi.org/10.1007/b96200

Brovchenko V., Merkulova M., Sittner J., … Cnudde V. X-ray absorption spectroscopic study of Pd2+ on Ni site in pentlandite. American Mineralogist. 2023;108: 2086–2095. https://doi.org/10.2138/am-2022-8704

Kalugin V., Gusev V., Tolstykh N., Lavrenchuk A., Nigmatulina E. Origin of the Pd–rich pentlandite in the massive sulfide ores of the Talnakh deposit, Norilsk Region, Russia. Minerals. 2021;11(11): 1258. https://doi.org/10.3390/min11111258

Makovicky E. Ternary and quaternary phase systems with PGE. In: The Geology, Geochemistry, Mineralogy and Mineral Beneficiation of Platinum-Group Elements. L. J. Cabri (ed.) Canadian Institute of Mining. Metallurgy and Petroleum; 2002, Special Vol. 54, pp. 131-175.

Kosyakov V. I., Sinyakova E. F. Peculiarities of behavior of trace elements during fractional crystallization of sulfide magmas. Doklady Earth Sciences. 2015;460(2): 179–182. https://doi.org/10.1134/S1028334X1502021X

Published
2024-11-18
How to Cite
Sinyakova, E. F., & Kokh, K. A. (2024). Behavior of major and minor elements during directional crystallization of Fe-Ni-Cu-S-(Rh, Ru, Ir, Pt, Pd, Ag, Au) melt. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 26(4), 755-771. https://doi.org/10.17308/kcmf.2024.26/12449
Section
Original articles