Evaluation of the thermodynamic stability of REMgAl11O19 (RE = La, Pr, Nd, Sm) hexaaluminates with a magnetoplumbite structure in the high temperature region

  • Konstantin S. Gavrichev Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., Moscow 119991, Russian Federation https://orcid.org/0000-0001-5304-3555
  • Vladimir N Guskov Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., Moscow 119991, Russian Federation https://orcid.org/0000-0003-0425-8618
  • Pavel G. Gagarin Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., Moscow 119991, Russian Federation https://orcid.org/0000-0001-6450-3959
  • Anton V. Guskov Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., Moscow 119991, Russian Federation https://orcid.org/0000-0003-0826-5495
Keywords: Hexaaluminates, Magnetoplumbite, RE, Thermodynamics, Thermal barrier coatings

Abstract

This study is important due to the lack of reliable data about the properties of high temperature materials for energy production and aerospace engineering. The purpose of this article was to evaluate the thermodynamic stability of RE magnesium hexaaluminates REMgAl11O19 (RE = La, Pr, Nd, Sm) with a magnetoplumbite structure, which are promising components for thermal barrier coatings. For this, we calculated the values of the Gibbs energy of the decomposition reactions of RE magnesium hexaaluminates into simple oxides and aluminum-magnesium spinel MgAl2O4 and REAlO3 phases in the temperature range of 298–1,800 K. For calculations, we used data on the thermodynamic properties of hexaaluminates calculated from the values of heat capacity measured by differential scanning calorimetry in the range of 300-1,800 K and from values of thermodynamic properties of simple oxides, MgAl2O4, and REAlO3 provided in previous research. There is hardly any information about the thermodynamic properties of RE magnesium hexaaluminates, which are promising thermal barrier materials. The purpose of the article is to provide a thermodynamic evaluation of the probability of decomposition reactions of hexaaluminates in the high temperature region.

Previously published data on the high temperature heat capacity of compounds with the composition of REMgAl11O19 (RE = La, Pr, Nd, Sm) were used to calculate temperature dependences of entropy and changes in enthalpy, which were used to evaluate the Gibbs energy of the decomposition reactions of hexaaluminates into constituent oxides.

The temperature dependences of the Gibbs energy of the four possible decomposition reactions of hexaaluminates allowed drawing conclusions about thermodynamic stability in the high temperature region

Downloads

Download data is not yet available.

Author Biographies

Konstantin S. Gavrichev, Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., Moscow 119991, Russian Federation

Dr. Sci. (Chem.), Chief Researcher, Head of Laboratory of Thermal Analysis and Calorimetry, Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences (Moscow, Russian Federation)

Vladimir N Guskov, Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., Moscow 119991, Russian Federation

Dr. Sci. (Chem.), Leading Researcher of Laboratory of Thermal Analysis and Calorimetry, Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences (Moscow, Russian Federation)

Pavel G. Gagarin, Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., Moscow 119991, Russian Federation

Cand. Sci. (Chem.), Senior Researcher of Laboratory of Thermal Analysis and Calorimetry, Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences (Moscow, Russian Federation)

Anton V. Guskov, Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., Moscow 119991, Russian Federation

Cand. Sci. (Chem.), Researcher of Laboratory of Thermal Analysis and Calorimetry, Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences (Moscow, Russian Federation)

References

Huang E-W., Tung C., Liaw P. K. High-temperature materials for structural applications: New perspectives on high-entropy alloys, bulk metallic glasses, and nanomaterials. MRS Bulletin. 2019;44: 847–853. https://doi.org/10.1557/mrs.2019.257

Lakiza S. M., Grechanyuk M. I., Ruban O. K., … Prokhorenko S. V. Thermal barrier coatings: current status, search, and analysis. Powder Metallurgy and Metal Ceramics. 2018;57(1-2): 82–113. https://doi.org/10.1007/s11106-018-9958-0

Stiger M. J., Yanar M. M., Topping M. G., Pettit F. S., Meier G. H. Thermal barrier coatings for the 21st century. International Journal of Materials Research.1999;90(12): 1069–1078. https://doi.org/10.1515/ijmr-1999-901218

Tejero-Martin D., Bennett C., T. Hussain T. A review on environmental barrier coatings: History, current state of the art and future developments. Journal of European Ceramic Society. 2021;41(3): 1747–1768. https://doi.org/10.1016/j.jeurceramsoc.2020.10.057

Poliarus O., Morgiel J., Żórawski W., … Cherniushok O. Microstructure, mechanical and thermal properties of YSZ thermal barrier coatings deposited by axial suspension plasma spraying. Archives of Civil and Mechanical Engineering. 2023;23: 89(1-11). https://doi.org/10.1007/s43452-023-00616-8

Gorelov V. P., Belyakov S., Abdurakhimova R. K. Phase transitions in monoclinic ZrO2. Physics of Solid State. 2023;65(3): 461–466. https://doi.org/10.21883/pss.2023.03.55589.541

Frommherz M., Scholz A., Oechsner M., Bakan E., Vaßen R. Gadolinium zirconate/YSZ thermal barrier coatings: Mixed-mode interfacial fracture toughness and sintering behavior. Surface and Coating Technologies. 2016;286: 119–128. https://doi.org/10.1016/j.surfcoat.2015.12.012

Kablov E. N., Doronin O. N., Artemenko N. I., Stekhov P. A., Marakhovskii P. S., Stolyarova V. L. Investigation of the physicochemical properties of ceramics in the Sm2O3–Y2O3–HfO2 system for developing promising thermal barrier coatings. Russian Journal of Inorganic Chemistry. 2020;65(6): 914–923. https://doi.org/10.1134/s0036023620060078

Chen L., Hu M., Guo J., Chong X., Feng J. Mechanical and thermal properties of RETaO4 (RE = Yb, Lu, Sc) ceramics with monoclinic-prime phase. Journal of Materials Science and Technology. 2020;52: 20–28. https://doi.org/10.1016/j.jmst.2020.02.051

Chen L., Song P., Feng J. Influence of ZrO2 alloying effect on the thermophysical properties of fluorite-type Eu3TaO7 ceramics. Scripta Materialia. 2018;152: 117–121. https://doi.org/10.1016/j.scriptamat.2018.03.042

Chen L., Guo J., Zhu Y., Hu M., Feng J. Features of crystal structures and thermo-mechanical properties of weberites RE3NbO7 (RE = La, Nd, Sm, Eu, Gd) ceramics. Journal of American Ceramic Society. 2021;104: 404–412. https://doi.org/10.1111/jace.17437

Gadow R., Lischka M. Lanthanum hexaaluminate – novel thermal barrier coatings for gas turbine applications – materials and process development. Surface and Coating Technologies. 2002;151-152: 392–399. https://doi.org/10.1016/S0257-8972(01)01642-5

Pitek F. M., Levi C. G. Opportunities for TBCs in the ZrO2-YO1.5-TaO2.5 system. Surface and Coating Technologies. 2007;201: 6044–6050. https://doi.org/10.1016/j.surfcoat.2006.11.011

Mikhailov G. G., Makrovets L. A., Smirnov L. A. Thermodynamics of the processes of interaction of liquid metal components in Fe – Mg – Al – La – O system. Izvestiya Visshikh Uchebnykh Zavedenii. Chernaya Metallurgiya = Izvestiya. Ferrous Metallurgy. 2018;61(6): 460–465. https://doi.org/10.17073/0368-0797-2018-6-460-465

Friedrich С., Gadow R., Schirmer T. Lanthanum hexaaluminate – a new material for atmospheric plasma spraying of advanced thermal barrier coatings. Journal of Thermal Spray Technology. 2001;10(4): 592–598. https://doi.org/10.1361/105996301770349105

Lu H., Wang C.-An, Zhang C., Tong S. Thermo-physical properties of rare-earth hexaaluminates LnMgAl11O19 (Ln: La, Pr, Nd, Sm, Eu and Gd) magnetoplumbite for advanced thermal barrier coatings. Journal of the European Ceramic Society. 2015;35: 1297–1306. https://doi.org/10.1016/j.jeurceramsoc.2014.10.030

Gagarin P. G., Guskov A. V., Guskov V. N., Khoroshilov A. V., Ryumin M. A., Gavrichev K. S. Synthesis and high-temperature heat capacity of LaMgAl11O19 and SmMgAl11O19 hexaaluminates. Russian Journal of Inorganic Chemistry. 2023;68(11): 1599–1605. https://doi.org/10.1134/s0036023623602064

Gagarin P. G., Guskov A. V., Guskov V. N., Nikiforova G. E., Gavrichev K. S. Heat capacity and thermal expansion of LaMgAl11O19*. Russian Journal of Inorganic Chemistry. 2024;69(6): accepted for publication. (In Russ.)

Gagarin P. G., Guskov A. V., Guskov V. N., Khoroshilov A. V., Efimov N. N., Gavrichev K. S. Heat capacity and magnetic properties of PrMgAl11O19*. Russian Journal of Physical Chemistry A. 2024; accepted for publication. (In Russ.)

Gagarin P. G., Guskov A. V., Guskov V. N., Ryumin M. A., Nikiforova G. E., Gavrichev K. S. Heat capacity of magnesium-neodymium hexaaluminate NdMgAl11O19*. Russian Journal of Physical Chemistry A. 2024; accepted for publication. (In Russ.)

van der Laan R. R., Konings R. J. M., van Genderen A. C. G., van Miltenburg J. C. The heat capacity of NdAlO3 from 0 to 900 K. Thermochimica Acta. 1999;329: 1–6. https://doi.org/10.1016/S0040-6031(99)00006-4

Kopan A. R., Gorbachuk M. P., Lakiza S. M., Tishchenko Ya. S. Thermodynamic characteristics of SmAlO3 in the range 55–300 K. Powder Metallurgy and Metal Ceramics. 2012;51(3-4): 209–216. https://doi.org/10.1007/s11106-012-9419-0

Konings R. J. M., Beneš O., Kovács A., … Osina E. The thermodynamic properties of the f-elements and their compounds. Part 2. The lanthanide and actinide oxides. Journal of Physical and Chemical Reference Data. 2014;4: 013101-1–013101-95. https://doi.org/10.1063/1.4825256

Zinkevich M. Thermodynamics of rare earth sesquioxides. Progress in Materials Science. 2007;52: 597–647. https://doi.org/10.1016/j.pmatsci.2006.09.002

Chase M. W. Jr. NIST-JANAF thermochemical tables. Journal of Physical and Chemical Reference Data Monographs. Washington DC: American Inst. of Physics; 1998, 1951 p.

Barin I. Thermochemical Data of Pure Substances. 3rd Edition. Published jointly by G. Platzki. VCH – Weinheim; New York; Base1; Cambridge; Tokyo: VCH. 2003 p.

Glushko V. P. Thermal constants of substances*. Reference book. Moscow: 1965-1982. (In Russ.)

Zhang Y., Navrotsky A. Thermochemistry of rare-earth aluminate and aluminosilicate glasses. Journal of Non-Crystalline Solids. 2004;341: 141–151. https://doi.org/10.1016/j.jnoncrysol.2004.04.027

Gavrichev K. S., Guskov V. N., Gagarin P. G., Guskov A. V., Khoroshilov A. V. Heat capacity and thermodynamic properties of REMgAl11O19 (RE = La, Pr, Nd, Sm) hexaaluminates with magnetoplumbite structure. In: XXIV International Conference on Chemical Thermodynamics in Russia RCCT-2024, July 1–5, 2024, Ivanovo, Russia RCCT-2024. Book of abstracts. Ivanovo: JSC “Ivanovo Publishing House” Publ.; 2024. p. 318. Available at: https://rcct.isc-ras.ru/sites/default/files/collectionabstracts/56/rcct-2024.pdf

Published
2024-11-21
How to Cite
Gavrichev, K. S., Guskov, V. N., Gagarin, P. G., & Guskov, A. V. (2024). Evaluation of the thermodynamic stability of REMgAl11O19 (RE = La, Pr, Nd, Sm) hexaaluminates with a magnetoplumbite structure in the high temperature region. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 26(4), 782-788. https://doi.org/10.17308/kcmf.2024.26/12453
Section
Short communication