Redox sorption of oxygen by Pd- and Cu-containing nanocomposites in the over-limiting current mode of electrochemical polarization
Abstract
Objectives: Palladium- and copper-containing nanocomposites have been synthesized with different capacities for a metal component chemically deposited in a macroporous sulfocation exchange matrix.
Experimental: It has been revealed that in the over-limiting mode of electrochemical polarization, the reduction of oxygen dissolved in water on a palladium-containing nanocomposite proceeds by a catalytic mechanism. In addition to the targeted O2 cathodic reduction process, adsorbed hydrogen is formed, which reacts catalytically with oxygen, which contributes to an additional decrease in O2 concentration. It was found that in the over-limiting polarization mode of the Pd-containing nanocomposite, the oxygen concentration decreases significantly compared to the limiting mode.
Conclusions: The specific amount of absorbed oxygen increases with a decrease in the content of the deposited metal, which is associated with the high adsorption capacity of atomic hydrogen by weakly associated palladium nanoparticles. When using copper instead of palladium, the effectiveness of water deoxygenation decreases.
Downloads
References
Nanoparticle Technology Handbook. Masuo Hosokawa, Kiyoshi Nogi, … Toyokazu Yokoyama (eds.). Elsevier Science; 2008. https://doi.org/10.1016/B978-0-444-53122-3.X5001-6
Nanocomposites: Synthesis, Characterization and Applications X. Wang (ed.). New York: Nova Sc. Publ.; 2013. 422 p.
Volkov V. V., Kravchenko T. A., Roldughin V. I. Metal nanoparticles in catalytic polymer membranes and fonexchange systems for advanced purification of water from molecular oxygen. Russian Chemical Reviews. 2013;82(5): 465–482. https://doi.org/10.1070/rc2013v082n05abeh004325
Povolotskaya A. V., Povolotskiy A. V., Manshina A. A. Hybrid nanostructures: synthesis, morphology and functional properties. Russian Chemical Reviews. 2015;84(6): 579–600. https://doi.org/10.1070/RCR4487
Lateef A., Nazzir R. Metal Nanocomposites: Synthesis, Characterization and their Applications. In book: Science and applications of Tailored Nanostructures. Ch. 12. Paolo Di Sia (ed.). Publisher: One central press; 2017. p. 239–256. Available at: https://www.researchgate.net/publication/313634485
Capek I. Nanocomposite structures and dispersions. Amsterdam: Elsevier; 2006. 301 p.
Proch S., Wirth M., White H. S., Anderson S. L. Strong effects of cluster size and air exposure on oxygen reduction and carbon oxidation electrocatalysis by size-selected Ptn (n ≤ 11) on glassy carbon electrodes. Journal of the American Chemical Society. 2013;135: 3073−3086. https://doi.org/10.1021/ja309868z
Nesselberger M., Roefzaad M., Hamou R F., … Arenz M. The effect of particle proximity on the oxygen reduction ate of size-selected platinum clusters. Nature Materials. 2013;12: 919–924. https://doi.org/10.1038/nmat3712
Nanoparticles and catalysis. Astruc D. (ed.). Weinheim: Wiley-VCH Verlag GmbH & Co; 2008. 663 p.
Reske R., Mistry H., Behafarid F., Roldan Cuenya B., Strasser P. Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles. Journal of the American Chemical Society. 2014;136(19): 6978−6986. https://doi.org/10.1021/ja500328k
Maillard F., Martin M., Gloaguen F., Lйger J.-M. Oxygen electroreduction on carbon-supported platinum catalysts. Particle-size effect on the tolerance to methanol competition. Electrochimica Acta. 2002;47(21): 3431–3440. https://doi.org/10.1016/s0013-4686(02)00279-7
Poltorak O. M. Lectures on chemical thermodynamics*. Moscow: Vysshaya shkola Publ.; 1971. 256 p. (in Russ.)
Rostovshchikova T. N., Smirnov V. V., Kozhevin V. M., Yavsin D. A., Gurevich S. A. Intercluster interactions in catalysis by nanosized particles*. Nanotechnologies in Russia. 2007;2(1-2): 47–60. (in Russ.). Available at: https://elibrary.ru/item.asp?id=9321693
Leontyev I. N., Belenov S. V., Guterman V. E., Haghi- Ashtiani P., Shaganov A. P., Dkhil B. Catalytic activity of carbon-supported Pt nanoelectrocatalysts. Why reducing the size of Pt nanoparticles is not always beneficial. The Journal of Physical Chemistry C. 2011;115(13): 5429–5434. https://doi.org/10.1021/jp1109477
Forster R. J., Keane L. Nanoparticle–metallopolymer assemblies: charge percolation and redox properties. Journal of Electroanalytical Chemistry. 2003;554-555: 345–354. https://doi.org/10.1016/S0022-0728(03)00258-4
Shel’deshov N. V., Mel’nikov S. S., Solov’eva T. T., … Zabolotskii V. I. The effect of silver ions and nanoparticles on the properties of ion-exchange materials. Russian Journal of Electrochemistry. 2011;47(2): 200–208. https://doi.org/10.1134/s1023193511020157
Chaika M. Yu., Kravchenko T. A., Polyanskii L. N., Krysanov V. A. Electroreduction of molecular oxygen on dispersed copper in an ion-exchange matrix. Russian Journal of Electrochemistry. 2008;44(11): 1244–1250. https://doi.org/10.1134/s1023193508110086
Yaroslavtsev A. B. Correlation between the properties of hybrid ion-exchange membranes and the nature and dimensions of dopant particles. Nanotechnologies in Russia. 2012;7(9–10): 437–451. https://doi.org/10.1134/s1995078012050175
Gattrell M., MacDougall B. Reaction mechanisms of the O2 reduction/evolution reaction. In book: Handbook of Fuel Cells – Fundamentals, Technology and Applications. Vol. 2. Part 5. Electrocatalysis. John Wiley & Sons; 2003. p. 443-464. https://doi.org/10.1002/9780470974001.f205034
PEM Fuel Cell Electrocatalysts and Catalyst Layers. Fundamentals and Applications. J. Zhang (ed.). Springer; 2008. 1137 p.
Semenova I. V., Florianovich G. M., Khoroshilov A. V. Corrosion and corrosion protection. I. V. Semenova (ed.). Moscow: Fizmatlit Publ.; 2002. 336 p. (in Russ.)
Volkov V. V., Petrova I. V., Yaroslavtsev A. B., Tereshchenko G. F. Deep purification of water from dissolved oxygen for microelectronics, power plants and the food industry*. Russian Membrane Society website. (in Russ.). Available at: http://memtech.ru/index.php/ru/glavnaya/publications/200-udalenie-kisloroda-iz-vody
SanPiN 2.1.3684-21 “Sanitary and epidemiological requirements for the maintenance of the territories of urban and rural settlements, water bodies, drinking water and drinking water supply, atmospheric air, soils, residential premises, operation of industrial and public premises, organization and implementation of sanitary and anti-epidemic (preventive) measures*.” 66 p. (in Russ.)
SanPiN 1.2.3685-21 “Hygienic standards and requirements for ensuring the safety and (or) harmlessness of environmental factors for humans*.” 1143 p. (in Russ.)
On the state of sanitary and epidemiological wellbeing of the population in the Russian Federation in 2022. State report*. Moscow: Federal Service for Surveillance on Consumer Rights Protection and Human Welfare, 2023. 368 p. (in Russ.)
Report “On the state of sanitary and epidemiological well-being of the population in the Voronezh region in 2023*”. Voronezh: Office of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing in the Voronezh Region, 2024. 199 p. (in Russ.)
Gurskii V. S., Kirpikov D. A., Kharitonova E. Yu., Tsapko Yu. V., Yasnev I. M. Catalytic deoxygenation of ighpurity
water using membrane electrode units. Russian Journal of Applied Chemistry. 2015;88(10): 1656–1660.
https://doi.org/10.1134/s107042721510016x
Kirpikov D. A., Pykhteev O. Ju., Kharitonova E. Ju., Tsapko Ju. V., Chistjakov I. V., Gurskij V. S. Device for electrochemical deoxygenationof highly pure water. Patent RF, no. 2494974, 2012. Publ. 10.10.2013, bull. no. 28. 9 p. (in Russ.)
Kravchenko T. A., Zolotukhina E. V., Chaika M. Yu., Yaroslavtsev A. B. Electrochemistry of metal-ion exchanger nanocomposites*. Moscow: Nauka Publ.; 2013. 363 p. (in Russ.)
Fertikova T. E., Fertikov S. V., Isaeva E. M., Krysanov V. A., Kravchenko, T. A. New nanocomposites for deep water deoxygenation. Condensed Matter and Interphases. 2021;23(43): 614–625. https://doi.org/10.17308/kcmf.2021.23/3682
Vakhnin D. D., Fertikova T. E., PolyanskiL. N., Kozaderov O. A., Kravchenko T. A. On the electrochemical deoxygenation of water with a nanocomposite containing copper metal nanoparticles and an ion-exchange polymer matrix. Nanobiotechnology Reports. 2022;17(6): 766–773. https://doi.org/10.1134/s2635167622060143
Ion exchange resins. Cationites*. Specifications: GOST 0298-2022. Moscow: FGBU «RST»; 2022. 16 p. (in Russ.)
Kravchenko T. A., Kalinichev A. I., Polyansky L. N., Konev D. V. Metal-ion exchanger nanocomposites*. Moscow: Nauka Publ.; 2009. 392 p. (in Russ.)
Damaskin B. B., Petriy O. A., Tsirlina G. A. Electrochemistry: A Textbook*. 3rd ed., corrected. St. Petersburg: Lan' Publ.; 2021. 672 p. (in Russ.)
Copyright (c) 2025 Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases

This work is licensed under a Creative Commons Attribution 4.0 International License.








