A SPIN POLARIZATION INVERSION OF ULTRA-SHORT SINGLE-WALLED CARBON NANOTUBES (0, 9) IN A STRONG ELECTRIC FIELD

  • Grigory I. Glushkov postgraduate student, Department of Physics of Semiconductors and Microelectronics, Voronezh State University; ph.: +7 (952) 5461253, e-mail: green5708@yandex.ru
  • Andrei V. Tuchin postgraduate student, Department of Physics of Semiconductors and Microelectronics, Voronezh State University; ph.: +7 (908) 1485775, e-mail: a.tuchin@bk.ru
  • Nikilay N. Efimov Cand. Sci. (Chem.), Senior Researcher, Kurnakov Institute of General and Inorganic Chemistry of RAS; ph.: +7 (916) 4579267, e-mail: nefimov@narod.ru
  • Eugene N. Bormontov Dr. Sci. (Phys.–Math.), Head of Department of Physics of Semiconductors and Microelectronics, Voronezh State University; ph.: +7 (473) 2208481, e-mail: me144@phys.vsu.ru

Abstract

Results of the numerical simulation of the electronic structure of ultra–short single-walled carbon nanotubes (0, 9) of D3h, D3d and D3symmetries at singlet and triplet spin states under an applied electric field were presented. The dependencies of the energy gap, ionization potential, electron affinity and work function on the length of nanotubes at the singlet and triplet spin state were described. It was revealed, that the spin-dependent field-induced electronic structure restructuring determines the change of the spin channel resistance. The critical electric field value ~0.5 V/A inverts spin polarization The carbon nanotubes can act as spin filter and can be used for spintronic logic gates design, that makes nanotubes promising material for spintronic implementation.

ACKNOWLEDGEMENTS

This work was supported by the Russian Foundation for Basic Research (research project no. 16-32-00926 mol_a).

Keywords: spin, spintronic, spin polarization cabron nanotubes

Downloads

Download data is not yet available.

References

1. Bhaattacharya S., Akande A. and Sanvito S. Chemical Communications, 2014, vol. 50, p. 6626 DOI: 10.1039/C4CC01710B. Available at http://pubs.rsc.org/en/content/articlelanding/2014/cc/c4cc01710b#!divAbstract
2. Awschalom D. D., Flatte M. E. Nature Communications, 2007, p. 153 DOI:10.1038/nphys551. Avaible at http://www.nature.com/nphys/journal/v3/n3/full/nphys551.html
3. Murat A., Rungger I., Jin C., Sanvito S. and Schwingenschlögl U. J. of Physical Chemistry C, 2014, vol. 118, pp. 3319-3321. DOI: 10.1021/jp4100153
4. Sun L., Wei1 P., Wei J., Sanvito S. and Hou1 S. J. of Physics: Condensed Matter, 2011,vol. 23, p. 425301. doi:10.1088/0953-8984/23/42/425301
5. Wu J., and Hagelberg F. Physical Review B, 2010, vol. 81, p. 155407.
6. Kamil L., Ritschel M., Albrecht L., Krupskaya Y., Buchner B., Klingeler R. J. of Physics: Conference Series, 2010, vol. 200, p. 072061.
7. Minot E. D., Yaish Y., Sazonova V., McEuen P., Nature, 2004, vol. 428, p. 536.
8. Sanchez-Valencia J. R., Dienel T., Gröning O., et al. Nat. Lett, 2014, vol. 512, p. 61. DOI: 10.1038/nature13607. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25100481
9. Kato T., Hatakeyama R. ACS Nano, 2010. vol. 4 p. 7395-7400. DOI: 10.1021/nn102379p Avialiable at http://pubs.acs.org/doi/pdf/10.1021/nn102379p
10. Tuchin A. V., Nestrugina A. V., Bityutskaya L. A., Bormontov E. N., J. of Physics: Conference Series, 2014, vol. 541, p. 012008. Available at http://iopscience.iop.org/article/10.1088/1742-6596/541/1/012008/pdf
11. Cioslowski J., Rao N. and Moncrieff D. J. of the American Chemical Society, 2002, vol. 124, p. 8485.
12. Rocherfort A., Salahub D. R. and Avouris. J. of Physical Chemistry B, 1999,vol. 103, p. 641.
13. Buonocore F., Trani F., Ninno D., et al. Nanotech, 2008, vol. 19, p. 025711 (6). DOI: 10.1088/0957-4484/19/02/025711. Available at: http://iopscience.iop.org/0957-4484/19/2/025711
14. Wang B-C, Wang H-W, Lin I-C, Lin Y-S, Chou Y-M and Chiu H-L. J. of the Chinese Chemical Society, 2002, vol. 50, p. 939.
15. Tuchin A. V., Ganin A. A., Zhukalin D. A., Bitytskaya L. A. and Bormontov E. N. Recent Advances in Biomedical & Chemical Engineering and Materials Science, 2014, vol. 1, p. 40 Available at http://www.europment.org/library/2014/venice/BICHE.pdf
16. Lu D., Li Y, Rotkin S. V., Ravaioli U., Schulten K. Nano Letters, 2004, vol. 4, p. 2383.
17. Yumura T., Hirahara K., Bandow S., Yoshizava, Iijima S. Chemical Physics Letters, 2004, vol. 386, p. 38.
18. Parker S. F., Bennington S. M., Taylor J. W., Herman H., Silverwood I., Albers P., Refson K. Physical Chemistry Chemical Physics, 2011, vol. 13, p. 11192.
19. Tuchin A. V., Bityutskaya L. A., Bormontov E. N., European Physical Journal D, 2015, vol. 69, p. 1
20. Schettino V., Pagliai M., and Cardini G. Journal of Physical Chemistry A, 2002, vol. 106, p. 1815.
21. Hertel I. V., Steger H, de Vries J., Weisser B., Menzel C., Kamke W. Physical Review Letters, 1992, vol. 68, p.784
22. Yoo R. K., Ruscic B., Berkowitz J. J. of Chemical Physics, 1992, vol. 96, p. 911.
23. de Vries J., Steger H., Kamke B., Menzel C., Weisser B., Kamke W., Hertel I. V. Chemical Physics Letters, 1992, vol. 188, p. 159.
24. Steger H., Holzapfel J., Hielscher A., Kamke W., Hertel I. V. Chemical Physics Letters, 1995, vol. 234, p.455.
25. Brink C., Andersen L. H., Hvelplund P., Mathur D., Voldstad J. D., Chemical Physics Letters, 1995,vol.233, p. 52.
26. Wang X. B., Ding C. F. and Wang L. S. J. of Chemical Physics, 1999, vol. 110, p. 8217.
27. Dresselhaus M. S., Dresselhaus G. and Saito R. Carbon, 1995, vol. 33 p. 883.
28. Saito R., Fujita M., Dresselhaus G. and Dresselhaus M. Physical Review B, 1992,vol. 46 p. 1804.
29. Odom T. W., Huang J. L., Kim P. and Lieber C. M. Nature, 1998,vol. 391, p. 62.
30. Ouyang M., Huang J. L. and Lieber C. M. Accounts of Chemical Research, 2002, vol.35 p. 1018.
Published
2017-11-06
How to Cite
Glushkov, G. I., Tuchin, A. V., Efimov, N. N., & Bormontov, E. N. (2017). A SPIN POLARIZATION INVERSION OF ULTRA-SHORT SINGLE-WALLED CARBON NANOTUBES (0, 9) IN A STRONG ELECTRIC FIELD. Condensed Matter and Interphases, 19(1), 37-41. https://doi.org/10.17308/kcmf.2017.19/174
Section
Статьи