PtM (M = Ni,Co,Cu)/C CATALISTS: SYNTHESIS, STRUCTURE, ACTIVITY IN OXYGEN REDACTION AND METHANOL OXIDATION REACTION

  • Vladislav S. Menshchikov student, Researcher, Southern Federal University; ph.: +7 (988) 9477431, e-mail: men.vlad@mail.ru
  • Sergey V. Belenov Cand. Sci. (Chem.), Researcher, Southern Federal University, ph.: +7 (904) 4499483, e-mail: sbelenov@sfedu.ru
  • Anastasia А. Alekseenko postgraduate student, Assistant, Chemistry Department, Southern Federal University; ph.: +7 (988) 5888468, e-mail: an-an-alekseenko@yandex.ru
  • Vadim А. Volochaev Cand. Sci. (Chem.), Researcher, Chemistry Department, Southern Federal University; ph.: +7 (863) 2975151, e-mail: v.a.volotchaev@mail.ru
Keywords: bimetallic nanoparticles, oxygen reduction reaction, methanol electrooxidation, fuel cells

Abstract

The purpose of this work is study to correlation between structure, electrochemically active surface area and activity in the oxygen reduction reaction and methanol electrooxydation of obtained by wet-synthesis PtM/C (M = Ni, Co, Cu) materials with atomic ratio Pt-M 1:1 and a commercial Pt/C material E-TEK 20.

Bimetallic PtM/C electrocatalysts were obtained by chemical reduction of metals from their compounds a carbon (Vulcan XC-72, Cabot) suspension based on two-component water-organic solvent at pH = 10 (excess of NH3). The characterization of PtM/C materials was performed by powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and cycle voltammetry (CV).

The average crystallite size according XRD for the received materials have from 1.7 to 2.5 nm and a platinum content of materials is 20 – 27% by weight. It was found that PtM/C catalysts have a smaller value of surface area - 40 m2/g (Pt) as compared with Pt/C catalyst - 100 m2/g(Pt). But despite this fact mass-activity (activity per mass of platinum, A/g(Pt)) in the oxygen reduction reaction (ORR) PtCu/C catalyst have not inferior to commercial Pt/C material. All of PtM/C materials demonstrated a high specific activity (activity per real surface area, mA/cm2) in the reaction of methanol oxidation (MOR) and a high tolerance for intermediate of methanol oxidation.

It was found that the alloying of various d-metals can have a positive effect on the activity in the reaction of oxygen electroreduction, methanol electrooxydation and a high tolerance for intermediate of methanol oxidation. However, for increase of the mass-activity it necessary to obtain of PtM/C catalysts with higher surface area.

ACKNOWLEDGEMENTS

The authors thank the Russian Foundation for Basic Research (project 16-38-60112 mol_a_dk) for the financial support of research.

Downloads

Download data is not yet available.

References

1. Grinberg V. A., Kulova T. L., Maiorova N. A., Skundin A. M., Khazova O. A., Dobrokhotova Zh. V., Pasynskii A. A. In Russian Journal of Electrochemistry, 2007, vol. 43, no. 1, pp. 75-84. DOI: 10.1134/S1023193507010119
2. Aricò A. S., Bruce, P., Scrosati B., Tarascon J.-M., Van Schalkwijk W. Nature Materials, 2005, vol. 4, no. 5, pp. 366-377. DOI:10.1038/nmat1368
3. Yaroslavtsev A. B., Dobrovolsky Yu. A., Shaglaeva N. S., Frolova L. A., Gerasimova E. V., Sanginov E. A. In Russian Chemical Reviews, 2012, vol. 81, no. 3, pp. 191–220. DOI:10.1070/RC2012v081n03ABEH004290.
4. Bagotzky V. S., Osetrova N. V., Skundin A. M. In Russian Journal of Electrochemistry, 2003, vol. 39, no. 9, pp. 919-934. DOI: 10.1023/A:1025719619261.
5. Tiwari J. N., Tiwari R. N., Singh G., Kim K. S. Nano Energy, 2013, vol. 2 no. 5, pp. 553-578. DOI: 10.1016/j.nanoen.2013.06.009
6. Peng Z., Yang H. Nano Today, 2009, vol. 4 no. 2, pp. 143-164. DOI: 10.1016/j.nantod.2008.10.010
7. Yao Nie, Li Li and Zidong Wei. Chem. Soc. Rev., 2015, vol. 44, pp. 2168-2201. DOI: 10.1039/C4CS00484A
8. Gasteiger H. A., Kocha S. S., Sompalli B., Wagner F. T. Applied Catalysis B: Environmental, 2005, vol. 56, pp. 9-35. DOI: 10.1016/j.apcatb.2004.06.021
9. Colmenares L., Guerrini E., Jusys Z., et al. J. Appl Electrochem, 2007, vol. 37, pp. 1413-1427. DOI: 10.1007/s10800-007-9353-x
10. Smirnova N. V., Kuriganova A. B., Leont'Eva D. V., Leont'Ev I. N., Mikheikin A. S. Kinetics and Catalysis, 2013, vol. 54, no. 2, pp. 255-262. DOI: 10.1134/S0023158413020146
11. Lv H., Li D., Strmcnik D., Paulikas A. P., Markovic N. M., Stamenkovic V. R. Nano Energy, 2016, vol. 29, pp. 149-165. DOI: 10.1016/j.nanoen.2016.04.008
12. Brancovic S. R., McBreen J., Adzic R. R. Electroanalyt. Chem., 2001, vol. 503, pp. 99-104. DOI: 10.1016/S0022-0728(01)00349-7
13. Gasteiger H. A., Markovic N., Ross P. N., Cairns E. J. J. Phys. Chem., 1994, vol. 98, pp. 617–625. DOI: 10.1021/j100053a042.
14. Guterman V. E., Belenov S. V., Dymnikova O. V., Lastovina T. A., Konstantinova Y. B., Prutsakova N. V. Inorganic Materials, 2009, vol. 45, no. 5, pp. 498-505. DOI: 10.1134/S0020168509050082
15. Alekseenko A. A., Guterman V. E., Volochaev V. A. and Belenov S. V. Inorganic Materials, 2015, vol. 51, no. 12, pp. 1258–1263. DOI: 10.1134/S0020168515120018
16. Guterman V. E., Lastovina T. A., Belenov S. V., Tabachkova N. Y., Vlasenko V. G., et al. J. of Solid State Electrochemistry, 2014, vol. 18, pp. 1307–1317. DOI: 10.1007/s10008-013-2314-x
17. Langford J. I., Wilson A. J. C. J. of Applied Crystallography, 1978, vol. 11, no. 2, pp. 102-113.
18. Guterman V. E., Alekseenko A. A., Volochaev V. A., Tabachkova N. Yu. Inorganic Materials, 2016, vol. 52, no. 1, pp. 23–28. DOI: 10.1134/S002016851601009X
19. Belenov S. V., Gebretsadik Veldegebrijel' I., Guterman V. E., Skibina L. M., Ljanguzov N. V. Condensed Matter and Interphases, 2015, vol. 17, no. 1, pp. 37-49. Available at: http://www.kcmf.vsu.ru/resources/t_17_1_2015_005.pdf
20. Gudko O. E., Smirnova N. V., Lastovina T. A., Guterman V. E. Nanotechnologies in Russia, 2009, vol. 4, no. 5-6, pp. 309-318. DOI: 10.1134/S1995078009050085
21. Alekseenko A. A., Belenov S. V., Volochaev V. A., Novomlinskij I. N., Guterman V. E. Condensed Matter and Interphases, 2016, vol. 18, no. 4, pp. 460-471. Available at: http://www.kcmf.vsu.ru/resources/t_18_4_2016_002.pdf
22. Ryzhonkov D. I., Levina V. V., Dzidziguri E. L. Nanomaterials: Textbook. Moscow, Binom Knowledge Laboratory Publ., 2008, p. 365. (in Russian)
23. Wang C., Dennis van der Vliet, Chang K.-C., You H., Strmcnik D., Schlueter J. A., Markovic N. M. and Stamenkovic V.R. J. Phys. Chem. C, 2009, vol. 113. pp. 19365−19368. DOI: 10.1021/jp908203p
24. Guterman V. E., Pakharev A. Y., Tabachkova N. Y. Applied Catalysis A: General, 2013, vol. 453, pp. 113-120. DOI: 10.1016/j.apcata.2012.11.041
25. van der Vliet, D. F., Wang, C., Li, D., Paulikas, A. P., Greeley, J., Rankin, R. B., Strmcnik, D., Tripkovic, D., Markovic, N. M. and Stamenkovic, V. R. Angew. Chem, 2012, vol. 124, pp. 3193–3196. DOI: 10.1002/ange.201107668
26. Acres G. J. K., Frost J. C., Hards G. A., Potter R. J., Ralph T. R., Thompsett D., Burstein G. T., Huchings G. J. Catal. Today, 1997, vol. 38, pp. 393-400. DOI:10.1016/S0920-5861(97)00050-3
27. Wasmus S., Kuver A. J. Electroanal. Chem., 1999, vol. 461, pp. 14-31. DOI:10.1016/S0022-0728(98)00197-1
28. Liu Z. L., Ling X. Y., Su X. D., Lee J. Y. and Gan L. M. J. Power Sources, 2005, vol. 149, pp 1-7. DOI: 10.1016/j.jpowsour.2005.02.009
29. Mu Y. Y., Liang H. P., Hu J. S., Jiang L. and Wan L. J. J. Phys. Chem. B, 2005, 109, 22212 - 22216. DOI: 10.1021/jp0555448.
Published
2017-11-06
How to Cite
Menshchikov, V. S., Belenov, S. V., AlekseenkoA. А., & VolochaevV. А. (2017). PtM (M = Ni,Co,Cu)/C CATALISTS: SYNTHESIS, STRUCTURE, ACTIVITY IN OXYGEN REDACTION AND METHANOL OXIDATION REACTION. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 19(1), 87-97. https://doi.org/10.17308/kcmf.2017.19/180
Section
Статьи