DOMAIN CONTRIBUTION TO THE DIELECTRIC PROPERTIES OF THE CRYSTALS OF TRIGLYCINE SULPHATE GROUP AND ROCHELLE SALT

  • Olga М. Golitsyna Cand. Sci. (Phys.-Math.), Assistant Professor, Voronezh State University, ph.: +7(473) 2208625, e-mail: golitsynaom@yandex.ru
  • Sergey N. Drozhdin Dr. Sci. (Phys.-Math.), Professor, Head of Department, Voronezh State University, ph.: +7(919) 1824460, e-mail: drozhdin@phys.vsu.ru
  • Valeriya О. Chulakova postgraduate student, Voronezh State University, ph.: +7(473) 2208625, e-mail: chulakovavo@mail.ru
  • Aleksandr Е. Gridnev Assistent, Voronezh State University; ph.: +7(473) 2208625, e-mail:gridnev@phys.vsu.ru
Keywords: triglycine sulphate, Rochelle salt, domain structure, oscillations of domain boundaries, dielectric properties, defects, Curie–Weiss law,

Abstract

The dielectric properties of the crystals of nominally pure triglycine sulphate (TGS), deuterated TGS, TGS doped with L,α – alanine, TGS with impurity of phosphorus Р5+ ions, TGS subjected to X-ray radiation as well as of Rochelle salt crystal were investigated. Temperature dependences of domain components of the real and imaginary parts of the dielectric permittivity measured in a weak ac electric field were obtained.  The existence of a moveable domain structure in defect-free TGS crystals does not lead to a deviation from the thermodynamic Curie – Weiss law in the ferroelectric phase, but causes a violation of the "law of two". In TGS crystals with impurity or radiation defects, pinning the domain structure, the both laws work well. For the studied crystals of the TGS group near the phase transition, there is no quantitative correlation between temperature behavior of static geometric parameters of the domain structure (density N and total length L of the domain boundaries), and the measured dielectric characteristics. The number of thermal cycles of heating and cooling with a transition through the Curie point practically does not affect the value of the domain component of the dielectric constant in TGS crystals, while an increase of the rate of passage of the phase transition leads to its significant decrease. In Rochelle salt crystals the domain part of the dielectric permittivity near the lower phase transition is considerably less than near the upper one, but it occupies a wider temperature range.

Downloads

Download data is not yet available.

References

1. Sidorkin A. S. Domain Structure in Ferroelectrics and Related Materials. United Kingdom, Cambridge International Science Publising, 2006, 234 p.
2. Tagantsev А. K., Cross L. E., J. Fousek J. Domains in Ferroic Crystals and Thin Films Springer, NewYork, 2010, 830 p.
3. Kamysheva L. N., Drozhdin S. N. Ferroelectrics, 1987, vol. 71, pp. 281-296.
4. Golitsyna O. M., Kamysheva L. N., Drozhdin S. N. Physics of the Solid State, 1998, vol. 40, no. 1, pp. 103-104. DOI: 10.1134/1.1130245
5. Lotonov A. M., Novik V. K., Gavrilova N. D. Physics of the Solid State, 2006, vol. 48, no. 6, pp. 1030–1033. DOI: 10.1134/S1063783406060047
6. Drozhdin S. N., Golitsyna O. M. Physics of the Solid State, 2012, vol. 54, no. 5, pp 905–910. DOI: 10.1134/S1063783412050071
7. Golitsyna O. M., Drozhdin S. N., CHulakova V. O. Bulletin of the Russian Academy of Sciences: Physics, 2016, vol. 80, no. 9, pp. 1111-1114. DOI: 10.7868/S0367676516090131
8. Golitsyna O. M., Grechkina M. V., Drozhdin S. N., Chulakova V. O. Condensed Matter and Interphases, 2016, vol. 18, no. 4, pp. 494—504. Available at: http://www.kcmf.vsu.ru/resources/t_18_4_2016_006.pdf (in Russian)
9. Kamysheva L. N., Drozhdin S. N., Serdyuk O. M. Phys. Stat. Sol.(a), 1986, vol. 97, K29-K34.
10. Kamysheva L. N., Drozhdin S. N., Golitsyna O. M. Vestnik VSTU, Series "Physical Materials Science",1996, vol. 1, no. 1, pp. 96-107.
11. Tomita N., Orihara H., and Ishibashi Y. J. of the Phys. Society of Jap., 1989, vol. 58, p. 1190-1196.
12. Likodimos V., Labardi V., and Allegrini M. Phys. Review B, 2000, vol. 61, no. 21, pp. 14440-14447. DOI: 0163-1829/2000/61~21!/14440~8!/$15.00
13. Golitsyna O. M., Drozhdin S. N., Chulakova V. O., Grechkina M. V. Ferroelectrics, 2017, vol. 506, pp. 127–135. DOI: 10.1080/00150193.2017.1282286
14. Golitsyna O. M., Drozhdin S. N., Korobova A. D., Chulakova V.O. Condensed Matter and Interphases, 2017, vol. 19, no. 1, pp. 42—50. Available at: http://www.kcmf.vsu.ru/resources/t_19_1_2017_005.pdf (in Russian)
15. Nakatani N. Japan. J. of Appl. Phys., 1985, vol. 24, no. 7, pp. L528-L530.
16. Lines M. E. and Glass A. M. Principle and Applications of Ferroelectrics and Related Materials. New York, Clarendon, 1982, 680 p.
17. Drozhdin S. N., Kuyancev M. A. Physics of the Solid State, 1998, vol. 40, no. 8, pp. 1398–1401. DOI: 10.1134/1.1130567
18. Tsedrik M. S. Physical Properties of Crystals of the Triglycine Sulfate Family. Minsk, Science and Technology Publ., 1986, 216 p. (in Russian)
19. Strukov B. A., Levanyuk A.P. Physical Fundamentals of Ferroelectric Phenomena in Crystals. Moscow:Nauka, Fizmatlit Publ., 1995, 216 p. (in Russian)
20. Luo E. Z., Xie Z., Xu J. B., Wilson I. H. Physical Review B., 2000, vol. 61, no. 1, pp. 203-206. DOI: https://doi.org/10.1103/PhysRevB.61.203
21. Nakatani N. Japan. J. of Appl. Phys., 1985, vol. 24, no. 7, pp. L528-L530.
22. Jona F., Shirane G. Ferroelectric Crystals. New York, Pergamon press, 1962, 554 p.
23. SHil'nikov A. V. Bulletin of the Russian Academy of Sciences: Physics, 1987, vol. 51, pp. 1726-1729. (in Russian)
24. Golitsyna O. M., Drozhdin S. N., Nikishina A. I. Physics of the Solid State, 2007, vol. 49, no. 10, pp. 1953–1956. DOI: 10.1134/S106378340710023X
Published
2017-11-06
How to Cite
GolitsynaO. М., Drozhdin, S. N., ChulakovaV. О., & GridnevA. Е. (2017). DOMAIN CONTRIBUTION TO THE DIELECTRIC PROPERTIES OF THE CRYSTALS OF TRIGLYCINE SULPHATE GROUP AND ROCHELLE SALT. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 19(2), 180-189. https://doi.org/10.17308/kcmf.2017.19/190
Section
Статьи