OPTICAL PROPERTIES OF EPITAXIAL GaxIn1–xP SOLID SOLUTIONS WITH ATOMIC ORDERING

  • Pavel V. Seredin Dr. Sci. (Phys.-Math.), Senior Staff Scientist, Solid State Physic and Nanostructures Department, Voronezh State University; e-mail: paul@phys.vsu.ru
  • Aleksandr S. Lenshin Cand. Sci. (Phys.-Math.), Senior Staff Scientist, Solid State Physic and Nanostructures Department, Voronezh State University; e-mail: lenshinas@phys.vsu.ru
  • Anatoly N. Lukin Cand. Sci. (Phys.-Math.), Lecture, Solid State Physic and Nanostructures Department, Voronezh State University; e-mail: alukin@phys.vsu.ru
  • Ivan N. Arsentyev Dr. Sci. (Eng.), Professor, Ioffe Physical and Technical Institute; e-mail: arsentyev@mail.ioffe.ru
  • Tatiana Prutskij grand PhD (Phys.-Math.), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Mexico; e-mail: prutskiy@yahoo.com
Keywords: solid solutions GaxIn1–xP, atomic ordering, IR-spectroscopy, UV-spectroscopy

Abstract

Using a set of spectroscopic methods, the properties of epitaxial GaxIn1-xP alloys with the ordered arrangement of the atoms in a crystal lattice grown by MOCVD on single-crystalline GaAs (100) substrates were studied. Based on the data of the dispersion analysis for IR reflection spectra and UV-spectroscopy data obtained in transmittance-reflection mode, the basic optical characteristics of the ordered GaxIn1-xP alloys were determined for the first time, i.e. dispersion of the refractive coefficient and high-frequency dielectric permeability.

The study of the optical and photoluminescence properties of the ordered GaxIn1-xP alloys in the UV spectral range confirms previous data that the metal-organic chemical deposition of the vapors (MOCVD) not only gives rise to a strong CuPt-B type ordering, but also ensures a good uniformity of the film and its transmission capacity. A decrease in the band gap energy on the ordered GaxIn1-xP alloy determined in our experiments at the specified level of distortion and factor of the order is in good agreement with the theoretical data and similar experimental studies.

Comparing the value of high-frequency dielectric permeability ε∞ for the epitaxially ordered GaxIn1-xP alloys with that for the disordered alloys of the same composition x ~ 0.50 determined from the analysis of IR reflection spectra, it was shown for the first time that this parameter for the ordered alloy was 1.5 – 2 times higher. Also it was shown that the refractive index for the epitaxial films with ordering is 1.5 – 2.5 times higher than that for disordered values of the same composition x ~ 0.50. Moreover, the maximum value of refractive index for the sample with a high degree of order was n = 5.45 at the wavelength of ~ 680 nm, while the close value for the disordered alloy with a similar composition of x ~ 0.50 was attained for wavelengths in the range of ~ 330 – 340 nm

ACKNOWLEDGMENTS

The work in the part of creating epitaxial heterostructures with high functional properties was carried out with the support of the grant of the President of the Russian Federation MD-188.2017.2.

Experimental studies were carried out with the help of the scientific and technical base of Voronezh State University Centre for Collective Use of Scientific Equipment.

Downloads

Download data is not yet available.

References

1. Zunger A. MRS Bull, 1997, vol. 22, pp. 20–26. doi:10.1557/S0883769400033364.
2. Wei S-H, Zunger A. Phys. Rev. B, 1994, vol. 49, pp. 14337–14351. doi:10.1103/PhysRevB.49.14337.
3. Mukherjee K., Deotare P. B., Fitzgerald E. A. Appl. Phys. Lett., 2015, vol. 106, p. 142109. doi:10.1063/1.4917254.
4. Domashevskaya E. P., Seredin P. V., Bityutskaya L. A., Arsent’ev I. N., Vinokurov D. A., Tarasov I. S. J. Surf. Investig. X-Ray Synchrotron Neutron Tech., 2008, vol. 2, pp. 133–136. doi:10.1007/s11700-008-1020-2.
5. Domashevskaya E. P., Seredin P. V., Dolgopolova E. A., Zanin I. E., Arsent’ev I. N., Vinokurov D. A., et al. Semiconductors, 2005, vol. 39, pp. 336–342. doi:10.1134/1.1882797.
6. Seredin P. V., Glotov A. V., Ternovaya V. E., Domashevskaya E. P., Arsentyev I. N., Vavilova L. S., et al. Semiconductors, 2011, vol. 45, pp. 1433–1440. doi:10.1134/S1063782611110236.
7. Seredin P. V., Domashevskaya E. P., Arsentyev I. N., Vinokurov D. A., Stankevich A. L., Prutskij T. Semiconductors, 2013, vol. 47, pp. 1–6. doi:10.1134/S106378261301020X.
8. Seredin P. V., Glotov A. V., Domashevskaya E. P., Arsentyev I. N., Vinokurov D. A., Stankevich A. L., et al. Semiconductors, 2010, vol. 44, pp. 1106–1112. doi:10.1134/S1063782610080270.
9. Ahrenkiel S. P., Jones K. M., Matson R. J., Al-Jassim MM, Zhang Y., Mascarenhas A., et al. MRS Proc., 1999, p. 583. doi:10.1557/PROC-583-243.
10. Laref S., Meçabih S., Abbar B., Bouhafs B., Laref A. Phys. B Condens. Matter., 2007, vol. 396, pp. 169–176. doi:10.1016/j.physb.2007.03.033.
11. Ernst P., Geng C., Scholz F., Schweizer H. Phys. Status Solidi B, 1996, vol. 193, pp. 213–229. doi:10.1002/pssb.2221930123.
12. Wei S-H., Ferreira L. G., Zunger A. Phys. Rev. B. Condens Matter., 1990, vol. 41, pp. 8240–8269.
13. Kazuo Uchida, Satoh K., Asano K., Koizumi A., Nozaki S. J. Cryst. Growth, 2013, vol. 370, pp. 136–140. doi:10.1016/j.jcrysgro.2012.09.054.
14. Cheong H. M., Alsina F., Mascarenhas A., Geisz J. F., Olson J. M. Phys. Rev. B, 1997, vol. 56, pp. 1888–1892. doi:10.1103.
15. Gomyo A., Suzuki T., Iijima S. Phys. Rev. Lett., 1988, vol. 60, pp. 2645–2648. doi:10.1103
16. Seredin P. V., Glotov A. V., Domashevskaya E. P., Lenshin A. S., Smirnov M. S., Arsentyev I. N, et al. Semiconductors, 2012, vol. 46, pp. 719–729. doi:10.1134/S106378261206019X.
17. Seredin P. V., Glotov A. V., Lenshin A. S., Arsentyev I. N., Vinokurov D. A., Prutskij T., et al. Semiconductors, 2014, vol. 48, pp. 21–29. doi:10.1134/S1063782614010217.
18. Seredin P. V., Glotov A. V., Domashevskaya E. P., Arsentyev I. N., Vinokurov D. A., Tarasov I. S. Phys. B Condens. Matter., 2010, vol. 405, pp. 4607–4614. doi:10.1016/j.physb.2010.07.026.
19. Pagès O., Chafi A., Fristot D., Postnikov A. V. Phys. Rev. B, 2006, vol. 73, p. 165206. doi:10.1103/PhysRevB.73.165206.
20. Verleur H. W. J. Opt. Soc. Am., 1968, vol. 58, p. 1356. doi:10.1364/JOSA.58.001356.
21. Seredin P. V., Glotov A. V., Domashevskaya E. P., Arsentyev I. N., Vinokurov D. A., Tarasov I. S., et al. Semiconductors, 2010, vol. 44, pp. 184–188. doi:10.1134/S1063782610020089.
22. Domashevskaya E. P., Seredin P. V., Lukin A. N., Bityutskaya L. A., Grechkina M. V., Arsent’ev I. N., et al. Semiconductors, 2006, vol. 40, pp. 406–413. doi:10.1134/S1063782606040075.
23. Chang I. F., Mitra S. S. Phys. Rev. B, 1970, vol. 2, pp. 1215–1216. doi:10.1103/PhysRevB.2.1215.
24. Adachi S. Properties of Semiconductor Alloys: Group-IV, III-V and II-VI. Semiconductors. 2009, Chichester, U.K: Wiley, 400 p.
25. Seredin P. V., Lenshin A. S., Kashkarov V. M., Lukin A. N., Arsentiev I. N., Bondarev A. D., et al. Mater. Sci. Semicond. Process., 2015, vol. 39, pp. 551–558. doi:10.1016/j.mssp.2015.05.067.
26. Seredin P. V., Kashkarov V. M., Arsentyev I. N., Bondarev A. D., Tarasov I. S. Phys. B Condens. Matter., 2016, vol. 495, pp. 54–63. doi:10.1016/j.physb.2016.04.044.
27. Schubert M., Gottschalch V., Herzinger C. M., Yao H., Snyder P. G., Woollam J. A. J. Appl. Phys., 1995, vol. 77, p. 3416. doi:10.1063/1.358632.
28. Vyas P. S., Gajjar P. N., Jani A. R. J. Phys. Conf. Ser., 2014, vol. 500, p. 182042. doi:10.1088/1742-6596/500/18/182042.
29. Boucenna M., Bouarissa N. Opt.-Int. J. Light Electron. Opt., 2014, vol. 125, pp. 6611–6615. doi:10.1016/j.ijleo.2014.08.112.
30. Kuzmenko A. B. Rev. Sci. Instrum., 2005, vol. 76, pp. 83–108. doi:10.1063/1.1979470.
31. Lucarini V., Peiponen K.-E., Saarinen J. J., Vartiainen E. M. Kramers-Kronig Relations in Optical Materials Research. 2005, vol. 110, Berlin, New York: Springer, 162 p. DOI10.1007/b138913
32. Seredin P. V., Domashevskaya E. P., Rudneva V. E., Rudneva V. E., Gordienko N. N., Glotov A. V., et al. Semiconductors, 2009, vol. 43, pp. 1221–1225. doi:10.1134/S106378260909022X.
33. Domashevskaya E. P., Seredin P. V., Lukin A. N., Bityutskaya L. A., Grechkina M. V., Arsentyev I. N., et al. Surf. Interface Anal., 2006, vol. 38, p. 828. doi:10.1002/sia.2306.
34. Ferreira L. G., Wei S. H., Zunger A. Phys. Rev. B, 1989, vol. 40, pp. 3197–3231. doi:10.1103/PhysRevB.40.3197.
35. Ernst P., Geng C., Scholz F., Schweizer H., Zhang Y., Mascarenhas A. Appl. Phys. Lett., 1995, vol. 67, p. 2347. doi:10.1063/1.114340.
36. Steiner M. A., Bhusal L., Geisz J. F., Norman A. G., Romero M. J., Olavarria W. J., et al. J. Appl. Phys., 2009, vol. 106, p. 63525. doi:10.1063/1.3213376.
37. Mori M. J., Fitzgerald E. A. J. Appl. Phys., 2009, vol. 105, p. 13107. doi:10.1063/1.3037240.
Published
2017-11-07
How to Cite
Seredin, P. V., Lenshin, A. S., Lukin, A. N., Arsentyev, I. N., & Prutskij, T. (2017). OPTICAL PROPERTIES OF EPITAXIAL GaxIn1–xP SOLID SOLUTIONS WITH ATOMIC ORDERING. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 19(3), 417-429. https://doi.org/10.17308/kcmf.2017.19/219
Section
Статьи