Synthesis, Structure and Magnetic Properties of Cobalt-Zinc Nanoferrite for Magnetorheological Liquids
Abstract
An upcoming trend in the application of micro- and nanosized magnetic particles is the development of magnetorheological fl uids for the automatic systems of damping devices in which the particles play the role of a component in the complex dispersed phase. In the search for magnetic materials for agnetorheological fl uids, the most important criteria in choosing are high shear stress of the suspension based on the particles vs. applied magnetic fi eld and a low value of coercive force.
The aim of the work was to investigate the structure, morphology, and magnetic properties of the nanoscaled powders of Co, Zn-ferrites and the evaluation of their effectiveness upon the rheological properties of the developed magnetorheological fl uids.
The Co, Zn-ferrite nanopowderwas synthesized by spray-drying technique followed by heat treatment in the presence of the inert matrix. The features of its morphology were investigated by x-ray diffraction analysis, transmission electron microscopy, and IR-spectroscopy.
The powdered nanoferriteCo0.65Zn0.35Fe2O4, used as a fi ller of magnetic fl uids, demonstrated values of coercive force Hc (10K) = 10.8 kOe, Hc (300 K) = 0.4 kOe as well as relative residual magnetization Mr/Ms(10K) = 0.75, Mr/Ms(300K) = 0.24.
The proposed synthesis technique allows obtaining crystallized particles of the ferrite with sizes not larger than 50 nm, which possess high shear stress in magnetorheological suspensions. The synthesis technique allows controlling the magnetic properties of Co,Zn-ferrite (as a component of magnetorheological
suspensions) by non-magnetic double-charged ion substitution of Co2+, i.e. ions Zn2+, in Co,Zn-spinel has been developed. The possibility has been established to decrease the coercive force and increase the magnetization up to the maximum cobalt content, corresponding to the composition formulae Co0.65Zn0.35Fe2O4. The high value of shear stress (103 Pa) at a relatively low value of magnetic induction (600 mT and higher) makes the material applicable as a filler for the magnetorheological suspensions of damping devices.
REFERENCES
- Korobko E. V., Pankov V. V., Kotikov D. A., Novikova Z. A., Novik E.S. Nanodispersed fi llers based on iron oxide for the complex dispersed phase of magnetically correctable hydraulic fluids. In: Nanostructures in condensed matter: Collection of scientifi c articles, 20–23 August 2018. Minsk: A. V. Lykov Heat and Mass Transfer Institute National Academy of Sciences of Belarus Publ.; 2018. p. 156–161. (InRuss.)
- Dragaљius E., Korobko E., Novikava Z., Sermyazhko E. Magnetosensitive Polymer composites and effect of magnetic field directivity on their properties. Solid State Phenomena. 2016;251: 3–7. DOI: https://doi.org/10.4028/www.scientific.net/SSP.251.3
- Joseph A., Mathew S. Ferrofluids: synthetic strategies, stabilization, physicochemical features, characterization, and applications. ChemPlusChem. 2014;79(10):1382–1420. DOI: https://doi.org/10.1002/cplu.201402202
- Genc S., Derin B. Synthesis and rheology of ferrofluids: a review. Current Opinion in Chemical Engeeniring. 2014;3(2): 118−124. DOI: https://doi.org/10.1016/j.coche.2013.12.006
- Vekas L., Avdeev M.V., Bica D. Magnetic nanofl uids: synthesis and structure. In: Donglu Shi (ed.) Nanoscience in biomedicine. Springer Berlin Heidelberg; 2009. 729 p. DOI: https://doi.org/10.1007/978-3-540-49661-8
- Frolov G. I., Bachina O. I., Zav’yalova M. M., Ravochkin S. I. Magnetic properties of nanoparticles of 3D metals. Technical physics. 2008;53(8):1059–1064. DOI: https://doi.org/10.1134/S1063784208080136
- Baraton M. I. Synthesis, functionalization, and surface treatment of nanoparticles, LA: Am. Sci. Publ.; 2002. 236 p.
- Martínez B., Obradors X., Balcells L., Rouanet A., Monty C. Effect of aluminum doping on structural and magnetic properties of Ni Zn ferrite nanoparticles. Physical Review Letters. 1998;80(1): 181–184. DOI: https://doi.org/10.4236/wjnse.2015.53009
- Mittova I. Ya., Sladkopevtsev B. V., Mittova V. O., Nguyen Anh Tien, Kopeichenko E. I., Khoroshikh N. V., Varnachkina I.A. Formation of nanoscale films of the (Y2O3–Fe2O3) on the monocrystal InP. Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases. 2019;21 (3): 406–418. DOI: https://doi.org/10.17308/kcmf.2019.21/1156 (In Russ., Abstract in Eng.)
- Mayekar J., Dhar V., Radha S. Synthesis, characterization and magnetic study of zinc ferrite nanoparticles. International Journal of Innovative Research in Science, Engineering and Technology. 2016;5(5): 8367–8371. DOI: https://doi.org/10.15680/IJIRSET.2016.0505268
- Jansi Rani B., Ravina M., Saravanakumar B., Ravi G., Ganesh V., Ravichandran S., Yuvakkumar R. Ferrimagnetism in cobalt ferrite (CoFe2O4) nanoparticles. Nano-Structures & Nano-Objects. 2018;14: 84–91. DOI: https://doi.org/10.1016/j.nanoso.2018.01.012
- Manouchehri S., Ghasemian Z., Shahbazi-Gahrouei D., Abdolah M. Synthesis and characterization of cobalt-zinc ferrite nanoparticles coated with DMSA. Chem Xpress. 2013;2(3): 147–152.
- Singhal S., Namgyal T., Bansal S., Chandra K. Effect of Zn Substitution on the magnetic properties of cobalt ferrite nanoparticles prepared via sol-gel route. Journal of Electromagnetic Analysis and Applications. 2010;2(6): 376–381. DOI: https://doi.org/10.4236/jemaa.2010.26049
- Rajendra S. G., Sang-Youn Ch., Rajaram S. M., Sung-Hwan H., Oh-Shim J. Cobalt ferrite nanocrystallites for sustainable hydrogen production application. International Journal of Electrochemistry. 2011;2011: 1–6. DOI: https://doi.org/10.4061/2011/729141
- Ladole C. A.Preparation and characterization of spinel zinc ferrite ZnFe2O4. International Journal of Chemical Science. 2012;10(3): 1230–1234. Available at: https://www.tsijournals.com/articles/preparationand-characterization-of-spinel-zinc-ferrite-znfe2o4.pdf
- Raghuvanshi S., Kane S. N., Tatarchuk T. R., Mazaleyrat F. Effect of Zn addition on structural, magnetic properties, antistructuralmodeling of Co1–xZnxFe2O4nanoferrite. AIP Conference Proceedings. 2018;1953(1): 030055. DOI: https://doi.org/10.1063/1.5032390
- Sawadzky G. A., Van der Woude F., Morrish A. H. Cation distributions in octahedral and tetrahedral sites of the ferrimagnetic spinel CoFe2O4. Journal of Applied Physics. 1968;39(2): 1204–1206. DOI: https://doi.org/10.1063/1.1656224
- Petrova E. G., ShavshukovaYa. A., Kotikov D. A., Yanushkevich K. I., Laznev K. V., Pan’kov V. V. Thermolysis of sprayed suspensions for obtaining highly spinel ferrite nanoparticles. Journal of the Belarusian State University. Chemistry. 2019;1: 14–21. Available at: https://journals.bsu.by/index.php/chemistry/article/view/1258 (In Russ., abstract in Eng.)
- Ranjani M., Jesurani S., Priyadharshini M., Vennila S. Sol-gel synthesis and characterization of zinc substituted cobalt ferrite magnetic nanoparticles. International Journal of Advanced Research. 2016;4(7): 53–58. DOI: https://doi.org/10.21474/ijar01/1148
- Lin Q., Xu J., Yang F., Lin J., Yang H., He Y. Magnetic and mцssbauer spectroscopy studies of zincsubstituted cobalt ferrites prepared by the sol-gel method. Materials. 2018;11(10): 1799. DOI: https://doi.org/10.3390/ma11101799
- Copolla P., da Silva F. G., Gomide G., Paula F. L. O, Campos A. F. C., Perzynski R., Kern C., Depeyrot G., Aquino R. Hydrothermal synthesis of mixed zinc–cobalt ferrite nanoparticles: structural and magnetic properties. Journal of Nanoparticle Research. 2016;18(138): 1–15. DOI: https://doi.org/10.1007/s11051-016-3430-1
- Yafet Y. , Kittel C. Antiferromagnetic arrangements in ferrites. Physical Review Journal. 1952;87(2): 290–294. DOI: https://doi.org/10.1103/PhysRev.87.290
- Praveena K., Sadhana K. Ferromagnetic properties of Zn substituted spinel ferrites for high frequency applications. International Journal of Scientifi c and Research Publications. 2015;5(4): 1–21. Available at: http://www.ijsrp.org/research-paper-0415.php?rp=P403877
- Komogortsev S. V., Patrusheva T. N., Balaev D. A., Denisova E. A., Ponomarenko I. V. Cobalt ferrite nanoparticles in a mesoporous silicon dioxide matrix. Technical Physics Letters. 2009;35(19): 882–884. DOI: https://doi.org/10.1134/S1063785009100022
- Komogortsev S. V., Iskhakov R. S., Balaev A. D., Kudashov A. G., Okotrub A. V., Smirnov S. I. Magnetic properties of Fe3C ferromagnetic nanoparticles encapsulated in carbon nanotubes. Physics of the Solid State. 2007;49(4): 734–738. DOI: https://doi.org/10.1134/S1063783407040233
- Ivashenko D. V., Petrova E. G., Mittova I. Ya., Ivanets A. I., Pankov V. V. Synthesis of cobalt-zinc ferrite nanoparticles by modifi ed aerosol pyrolysis. In: Alternative Sources of Raw Materials and Fuels: Materials of the VII International Scientific and Technical Conference, 28–30 May 2019. Minsk: 2019. p. 120. Available at: http://aist.ichnm.by/doc/Abstract_AICT_2019.pdf (In Russ.)
- Gözüak, F., Koseoglu, Y., Baykal, A., Kavas H. Synthesis and characterization of CoxZn1−xFe2O4 magnetic nanoparticles via a PEG-assisted route. Journal of Magnetism and Magnetic Materials. 2009;321(14): 2170–2177. DOI: https://doi.org/10.1016/j.jmmm.2009.01.008
- Abdallah H. M. I., Moyo T., Ezekiel I. P., Osman N. S. E. Structural and magnetic properties of Sr0.5Co0.5Fe2O4 nanoferrite. Journal of Magnetism andMagnetic Materials. 2014;365(9): 83–87. DOI: https://doi.org/10.1016/j.jmmm.2014.04.041
Downloads
Copyright (c) 2020 Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.