Characterization of the properties of thin Al2O3 fi lms formed on structural steel by the sol-gel method
Abstract
The sol-gel method was used to obtain single and double layer oxide-aluminium fi lms on the surface of 08kp structural steel for protection against corrosion. The sol-gel system was prepared according to the Yoldas method by hydrolytic polycondensation of aluminium isopropoxide in the presence of acetic acid at a temperature of 85-90 °C. The pH, size, and zeta potential of boehmite particles were measured, and the corrosion behaviour of steel in the resulting colloids was studied. At room temperature, a boehmite hydrogel layer was applied by immersing the steel samples in a gel, incubating them in the gel, and drying them in the presence of ammonia vapour for the suppression of corrosion. Heat treatment at 500 °C in an air atmosphere was used for the decomposition of boehmite with the formation of alumina and for the fi xation of the fi lm on the surface of the substrate. A second fi lm layer was applied in a similar manner on top of a fully formed fi rst layer.
The surface morphology of the obtained fi lms was studied by scanning electron and atomic force microscopy. Electrochemical research methods - potentiometry, voltammetry, and electrochemical impedance spectroscopy were used for a comparative study of the anticorrosion properties of single and double layer aluminium oxide coatings on steel in a 3.5% sodium chloride solution. It was shown that the coatings obtained according to the described scheme have good adhesion to the steel surface.
Compared with the control sample, coated steel electrodes were characterized by a shift in the stationary potential by more than 0.6 V, and the onset of active electrochemical oxidation by more than 1 V in the positive direction. The kinetics of the anode and cathode processes changed, leading to a decrease in the corrosion current by more than two orders of magnitude.
The application of the method of electrochemical impedance spectroscopy allowed establishing a 2.5-hour high anticorrosiveeffi ciency of a double layer oxide-aluminium coating on steel in a solution of sodium chloride.
REFERENCES
- Vert R., Carles P., Laborde E., Mariaux G., Meillo E., Vardelle A. Adhesion of ceramic coating on thin and smooth metal substrate: A novel approach with a nanostructured ceramic interlayer. Journal of Thermal Spray Technology. 2012; 21(6): 1128–1134. DOI: http://doi.org/10.1007/s11666-012-9798-2
- Guglielmi M. Sol-gel coatings on metals. Journal of Sol-Gel Science and Technology. 1997;8(1–3): 443–449. DOI: https://doi.org/10.1007/BF02436880
- Bahuguna G., Mishra N. K., Chaudhary P., Kumar A., Singh R. Thin fi lm coating through sol-gel technique. Research Journal of Chemical Sciences. 2016;6(7): 65–72. E-ISSN 2231-606X
- Kobayashi Y., Ishizaka T., Kurokawa Y. Preparation of alumina fi lms by the sol-gel method. Journal of Materials Science. 2005;40: 263–283. DOI: https://doi.org/10.1007/s10853-005-6080-8
- Singh I. B., Modi O. P., Ruhi G. Development of sol-gel alumina coating on 9 Cr-1 Mo ferritic steel and their oxidation behavior at high temperature. Journal of Sol-Gel Science and Technology. 2015;74: 685–691. DOI: https://doi.org/10.1007/s10971-015-3649-9
- Masalski J., Gluszek J., Zabrzeski J., Nitsch K., Gluszek P. Improvement in corrosion resistance of the 316l stainless steel by means of Al2O3 coatings deposited by the sol-gel method. Thin solid films. 1999;349: 186–190. DOI: https://doi.org/10.1016/S0040-6090(99)00230-8
- Tiwari S. K., Sahu R. K., Pramanick A. K., Singh R. Development of conversion coating on mild steel prior to sol gel nanostructured Al2O3 coating for enhancement in corrosion resistance. Surface and Coatings Technology. 2011;205: 4960–49677. DOI: https://doi.org/10.1016/j.surfcoat.2011.04.087
- Oks M. E., Tyunkov A. V., Yushkov Yu. G., Zolotukhin D. B. Ceramic coating deposition by electron beam evaporation. Surface and CoatingsTechnology. 2017;325: 1–6. DOI: https://doi.org/10.1016/j.surfcoat.2017.06.0.042
- Xu P., Coyle T. W., Pershin L., Mostaghimi J. Superhydrophobic ceramic coating: Fabrication by solution precursor plasma spray and investigation of wetting behavior. Journal Colloid Interface Science. 2018; 1(523): 35–44. DOI: https://doi.org/10.1016/j.jcis.2018.03.018
- Shu-Wei Y., Guan-Jun Y., Cheng-Xin L., Chang-Jiu L. Improving erosion resistance of plasma-sprayed ceramic coatings by elevating the deposition temperaturebased on the critical bonding temperature. Journal of Thermal Spray Technology. 2018; 27 1–2): 25–34. DOI: https://doi.org/10.1007/s11666-017-0633-7
- Katagiri K., Tanaka Y., Uemura K., Inumaru K., Seki T., Takeoka Y. Structural color coating fi lters composed of an amorphous array of colloidal particles via electrophoretic deposition. NPG Asia Materials. 2017;9(e355): 1–7. DOI: https://doi.org/10.1038/am.2017.13
- Alan G., Sajin G., Tinu T., Vibhath K., Sreejith M. Corrosion behavior of sol-gel derived nano-alumina fi lm. International Journal. Scientifi c & Engineering Research. 2016;7(3): 130–139. ISSN 2229-5518
- Wang D., Bierwagen G. P. Sol – gel coatings on metals for corrosion protection. Progress in Organic Coatings. 2009;64(4): 327–338. DOI: https://doi.org/10.1016/j.porgcoat.2008.08.01.01
- Stambolova I., Yordanov S., Lakov L., Blaskov V., Vassilev S., Alexandrova M., Jivov B., Kostova Y., Simeonova S., Balashev K. Development of new nanosized sol gel coatings on steel with enhanced corrosion resistance. Materials Science. Non-Equilibrium Phase Transformations. 2018;4(1): 18–20. Available at: https://stumejournals.com/journals/ms/2018/1/18.full.pdf
- Kiele E., Senvaitiene J., Grigucevičiené A., Ramanauskas R., Raudonis R., Kareiva A. Sol-gel derived coatings for the conservation of steel. Processing and Application of Ceramics. 2015;9(2): 81–89. DOI: https://doi.org/10.2298/PAC1502081K
- Nofz M. Alumina Thin Films. In: Klein L., Aparicio M., Jitianu A. (eds.) Handbook of Sol-Gel Science and Technology. Switzerland: Springer International Publishing, Inc.; 2016. 765–808 pp DOI: https://doi.org/10.1007/978-3-319-32101-1_133
- Grishina E. P., Kudryakova N. O., Ramenskaya L. M. Primenenie zol’-gel ‘metoda dlya naneseniya oksidnoalyuminievogo pokrytiya na nizkolegirovannuyu stal’ [Application of sol-gel method for the formation of alumina coating on low-alloyed steel]. Gal’vanotekhnika i obrabotka vertkhnosti. 2019;27(2): 59–68. Available at: http://www.galvanotehnika.info/articles.php?y=2019&n=2&a=6 (In Russ., abstract in Eng.)
- Yoldas B. E., Transparent activated nonparticulate alumna and method of preparing same Patent United States, No. 3,944,658. 1976.
- GOST 1050-88. Prokat sortovoj, kalibrovanyj, so special’noj otdelkoj revhnosti iz uglerodistoj kachestvennoj konstrukcionnoj stali. Obshhie tehnicheskie uslovija. [High-quality rolled products, calibrated, with a special surface fi nish made of high-quality carbon structural steel. General specifi cations] Moscow: Standartinform Publ. (In Russ.)
- Yang Q. I. Synthesis of g-Al2O3 nanowires through a boehmite precursor route. Bulletin of Materials Science. 2011;34(2): 239–244. DOI: https://doi.org/10.1007/s12034-011-0062-z
- Boumaza A., Favaro L., Ledion J., Sattonnay G., Brubach J. B., Berthet P., Huntz A. M., Roy P., Tetot R. Transition alumina phases induced by heat treatment of boehmite: An X-ray diffraction and infrared spectroscopy study. Journal of Solid State Chemistry. 2009; 182: 1171–1176. DOI: https://doi.org/10.1016/j.jssc.2009.02.006.
- Aparicio M., Mosa J. Electrochemical characterization of sol-gel coatings for corrosion protection of metal substrates. Journal of Sol-Gel Science and Technology. 2018; 88: 77–89. DOI: https://doi.org/10.1007/s10971-018-4785-9
- Lazar A.-M., Wolfgang W. P., Marcelin S., Pйbиre N., Samйlor D., Tendero C., Vahlas C. Corrosion protection of 304L stainless steel by chemical vapor deposited alumina coatings. Corrosion science. 2014;81: 125–131. DOI: https://doi.org/10.1016/j.corsci.2013.12.01.01
- Gaberšček M., Pejovnik S. Impedance spectroscopy as a technique for studying the spontaneous passivation of metals in electrolytes. Electrochimica Acta. 1996;41(7/8): 1137–l142. DOI: https://doi.org/10.1016/0013-4686(95)00464-5
- Yuan X.-Z. R., Song C., Wang H., Zhang J. Electrochemical impedance spectroscopy in PEM fuel cells: fundamentals and applications. London: Springer, Inc.; 2010. 420 p.
- Pyun S.-I., Shin H.-C., Lee J.-W., Go J.-Y. Electrochemistry of insertion materials for hydrogen and lithium. Berlin: Springer, Inc.; 2012. 250 p.
- Orazem M. E., Frateur I., Tribollet B., Vivier V., Marcelin S., Pйbиre N., Bunge A. L., White E. A., Riemer D. P., Musiani M.. Dielectric properties of materials showing constant-phase-element (CPE) impedance response. Journal of the Electrochemical Society. 2013;160(6): C215–C225. DOI: https://doi.org/10.1149/2.033306jes
- KNT group. Production of sorbents and catalysts. Available at: https://www.kntgroup.ru/en/information/adsorptive
- Fok M. V. Geometricheskaya forma molekul vody. [The geometrical shape of a water molecule]. Kratkie soobshchenia po fi zike fi an. 2002;3: 28–32. Available at: https://cyberleninka.ru/article/n/geometricheskayaforma-molekul-vody/viewer (In Russ.)
- Tanganov B. B. O razmerah gidratirovannyh ionov (k probleme opresnenija morskoj vody) [On the size of hydrated ions (on the problem of desalination of sea water)]. Uspehi sovremennogo estestvoznanija. 2009;12: 25–26. Available at: http://www.naturalsciences.ru/en/article/view?id=14059 (In Russ.)
Downloads
Copyright (c) 2020 Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.