NEXAFS and XPS Studies of Cr/MWCNT Composites

  • Sergey V. Nekipelov Federal Research Centre “Komi Science Centre of the Ural Branch of the Russian Academy of Sciences”, 24 ul. Kommunisticheskaya, Syktyvkar 167982, Russian Federation, Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky prospekt, Syktyvkar https://orcid.org/0000-0001-6749-738X
  • Alena E. Mingaleva Federal Research Centre “Komi Science Centre of the Ural Branch of the Russian Academy of Sciences”, 24 ul. Kommunisticheskaya, Syktyvkar 167982, Russian Federation, Saint Petersburg State University 7-9 Universitetskaya naberehnaya, Saint Petersburg 199034, Russian Federation
  • Olga V. Petrova Federal Research Centre “Komi Science Centre of the Ural Branch of the Russian Academy of Sciences”, 24 ul. Kommunisticheskaya, Syktyvkar 167982, Russian Federation https://orcid.org/0000-0003-0398-3113
  • Danil V. Sivkov Federal Research Centre “Komi Science Centre of the Ural Branch of the Russian Academy of Sciences”, 24 ul. Kommunisticheskaya, Syktyvkar 167982, Russian Federation, Saint Petersburg State University 7-9 Universitetskaya naberehnaya, Saint Petersburg 199034, Russian Federation https://orcid.org/0000-0002-5324-1209
  • Dmitry V. Bogachuk Federal Research Centre “Komi Science Centre of the Ural Branch of the Russian Academy of Sciences”, 24 ul. Kommunisticheskaya, Syktyvkar 167982, Russian Federation
  • Anatoly M. Ob’edkov G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, 49 ul. Tropnina, Nizhny Novgorod 603137, Russian Federation
  • Boris S. Kaverin Federal Research Centre “Komi Science Centre of the Ural Branch of the Russian Academy of Sciences”, 24 ul. Kommunisticheskaya, Syktyvkar 167982, Russian Federation
  • Roman N. Skandakov Federal Research Centre “Komi Science Centre of the Ural Branch of the Russian Academy of Sciences”, 24 ul. Kommunisticheskaya, Syktyvkar 167982, Russian Federation
  • Viktor N. Sivkov Federal Research Centre “Komi Science Centre of the Ural Branch of the Russian Academy of Sciences”, 24 ul. Kommunisticheskaya, Syktyvkar 167982, Russian Federation, Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky prospekt, Syktyvkar 167000, Russian Federation https://orcid.org/0000-0001-9916-1514
Keywords: multi-walled carbon nanotube, absorption cross section, photoelectron output depth, metal coating, NEXAFS, XPS, MOCVD.

Abstract

Nanocomposites obtained by MOCVD through deposition of pyrolytic chromium layers of different thickness on the outer surface of multi-walled carbon nanotubes (MWCNTs) using the “Barkhos” chromium-organic liquid were studied.. These pyrolytic Cr coatings have high microhardness, heat resistance, hydrophobicity, and chemical resistance to hydrochloric and sulphuric acids and alkali melt.
The unique physical properties of chromium coatings as well as chemical resistance in a wide temperature range and large external surface of MWCNTs offer great opportunities for the possible applications of the studied nanocomposites. An important problem in this case is the determination of the mechanisms of chromium adhesion to the chemically inert surface of MWCNTs.
A promising method of studying the interface between the MWCNT surface and the coating layer is ultra-soft X-ray spectroscopy in the NEXAFS 1s carbon ionization threshold region. However, there are practically no publications on such studies for chromium compounds due to the superposition of the structure of NEXAFS Cr2p absorption spectra on the NEXAFS C1s ionization threshold region. In the present paper, nanocomposites were studied by the total electron yield method using the unique technique of suppressing and measuring the contribution of multiple orders near the C1s absorption edge.
The studies of the nanocomposite (pyrolytic Cr)/MWCNT performed by NEXAFS and XPS methods showed: (i) the initial MWCNT features are preserved in the composite spectrum; (ii) there is no signifi cant destruction of the outer layers of MWCNTs; (iii) the interface between the MWCNT and the pyrolytic chromium coating is a multilayer structure. This structure includes the outer surface of the MWCNT, the atoms of which form С–О and C–Cr bonds with the pyrolytic chromium coating, chromium carbide monolayer, and the chromium oxide (Cr2O3) coating layer. The effective thickness of the chromium
oxide and chromium carbide coating layers is 1.5 and 0.3 nm respectively, were determined for the studied samples.

 

 

 

REFERENCES

  1. Ob’edkov A. M., Kaverin B. S., Gusev S. A., Ezerskii A. B., Semenov N. M., Zaytsev A. A., Egorov V. A., Domrachev G. A. MOCVD modifi cation of the surface of multiwalled carbon nanotubes to impart to them the necessary physicochemical properties. Journal of Surface Investigation. 2009; 3(4): 554–558. DOI: https://doi.org/10.1134/S1027451009040120
  2. Kirillov A. I., Ob’edkov A. M., Egorov V. A., Domrachev G. A., Kaverin B. S., Semenov N. M., Lopatina T. I., Gusev S. A., Mansfeld A. D. Sozdanie spomoshch’yu MOCVD-tekhnologii nanostrukturirovannykh kompozitsionnykh materialov na osnove mnogostennykh uglerodnykh nanotrubok [Creation of nanostructured composite materials based on multi-walled carbon nanotubes using MOCVD] Nanotekhnika [Nanotechnology] 2011; 1(25): 72–78. (In Russ.)
  3. Sivkov V. N., Ob’edkov A. M., Petrova O. V., Nekipelov S. V., Kremlev K. V., Kaverin B. S., Semenov N. M., Gusev S. A. X-ray and synchrotron investigations of heterogeneous systems based on multiwalled carbon nanotubes. Physics of the Solid State. 2015;57(1): 197–204. DOI: https://doi.org/10.1134/S1063783415010291
  4. Petrova O. V., Nekipelov S. V., Mingaleva A. E., Sivkov V. N., Obiedkov A. M., Kaverin B. S., Kremlev K. V., Ketkov S. Yu., Gusev S. A., Vyalikh D. V., Molodtsov S. L. Study of composite MWCNT/pyrolytic Cr interface by NEXAFS spectroscopy. Journal of Physics: Conference Series. 2016;741(1): 012038. DOI: https://doi.org/10.1088/1742-6596/741/1/012038
  5. Fedoseenko S. I., Iossifov I. F., Gorovikov S. A., Schmidt J., Follath R., Molodtsov S. L., Adamchuk V. K., Kaindl G. Development and present status of the Russian-German soft X-ray beamline at BESSY II. Nucl. Instr. and Meth. A. 2001;470: 84–88. DOI: https://doi.org/10.1016/S0168-9002(01)01032-4
  6. Kummer K., Sivkov V. N., Vyalikh D. V., Maslyuk V. V., Bluher A., Nekipelov S. V., Bredow T., Mertig I., Mertig M., Molodtsov S. L. Oscillator strength of the peptide bond π*-resonances at all relevant x-ray absorption edges. Physical Review B. 2009;80: 155433–155438. DOI: https://doi.org/10.1103/PhysRevB.80.155433
  7. Jeong H.-K., Noh H.-J., Kim J.-Y., Jin M. H., Park C. Y., and Lee Y. H. X-ray absorption spectroscopy of graphite oxide. Europhysics Letters. 2008;82: 67004-1–5. DOI:  
    https://doi.org/10.1209/0295-5075/82/67004
  8. Madix R. J., Solomon J. L., and Stцhr J. The orientation of the carbonate anion on Ag(110). Surf. Sci. 1988;197: L253–L259. DOI: https://doi.org/10.1016/0039-6028(88)90624-39  
  9. Chen J. G. NEXAFS investigations of transition metal oxides, nitrides, carbides, sulfides and other interstitial compounds. Surface Science Report. 1997;30: 1–152. DOI:
    https://doi.org/10.1016/S0167-5729(97)00011-3
  10. Ruihua Cheng B. Xu., Borca C. N., Sokolov A., Yang C.-S., Yuan L., Liou S.-H., Doudin B., Dowben P. A. Characterization of the native Cr2O3 oxide surface of CrO2. Appl. Phys. Letters. 2001;79: 3122–3124. DOI: https://doi.org/10.1063/1.1416474
  11. NIST Standard Reference Database 71. NIST Electron Inelastic-Mean-Free-Path Database: Version 1.2. Available at: www.nist.gov/srd/nist-standardreference-database-71
  12. Teghil R., Santagata A., De Bonis A., Galasso A., Villani P. Chromium carbide thin films deposited by ultra-short pulse laser deposition. Applied Surface Science. 2009; 255: 7729–7733. DOI: https://doi.org/10.1016/j.apsusc.2009.04.151
  13. Zhao D., Jiang X., Wang Y., Duan W., Wang L. Microstructure evolution, wear and corrosion resistance of Cr-C nanocomposite coatings in seawater. Applied Surface Science. 2018;457: 914–924. DOI: https://doi.org/10.1016/j.apsusc.2018.06.248

Downloads

Download data is not yet available.

Author Biographies

Sergey V. Nekipelov, Federal Research Centre “Komi Science Centre of the Ural Branch of the Russian Academy of Sciences”, 24 ul. Kommunisticheskaya, Syktyvkar 167982, Russian Federation, Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky prospekt, Syktyvkar

PhD in Physics and Mathematics, Head of the Laboratory, Federal Research Centre “Komi
Science Centre of the Ural Branch of the Russian Academy of Sciences”; Associate Professor, Pitirim
Sorokin Syktyvkar State University, Syktyvkar, Russian Federation; e-mail: NekipelovSV@mail.ru

Alena E. Mingaleva, Federal Research Centre “Komi Science Centre of the Ural Branch of the Russian Academy of Sciences”, 24 ul. Kommunisticheskaya, Syktyvkar 167982, Russian Federation, Saint Petersburg State University 7-9 Universitetskaya naberehnaya, Saint Petersburg 199034, Russian Federation

Junior Researcher, Federal Research Centre “Komi Science Centre of the Ural Branch of the Russian Academy of Sciences”, Syktyvkar, Russian Federation; Trainee, Saint Petersburg State University, Saint Petersburg, Russian Federation; e-mail: amingaleva@gmail.com.

Olga V. Petrova, Federal Research Centre “Komi Science Centre of the Ural Branch of the Russian Academy of Sciences”, 24 ul. Kommunisticheskaya, Syktyvkar 167982, Russian Federation

PhD in Physics and Mathematics, Researcher, Federal Research Centre “Komi Science Centre of the Ural Branch of the Russian Academy of Sciences”, Syktyvkar, Russian Federation; e-mail:
teiou@mail.ru

Danil V. Sivkov, Federal Research Centre “Komi Science Centre of the Ural Branch of the Russian Academy of Sciences”, 24 ul. Kommunisticheskaya, Syktyvkar 167982, Russian Federation, Saint Petersburg State University 7-9 Universitetskaya naberehnaya, Saint Petersburg 199034, Russian Federation

PhD in Physics and Mathematics, Researcher, Federal Research Centre “Komi Science Centre of the Ural Branch of the Russian Academy of Sciences”, Syktyvkar, Russian Federation; Researcher, Saint Petersburg State University, Saint Petersburg, Russian Federation; e-mail: d.sivkov@spbu.ru.

Dmitry V. Bogachuk, Federal Research Centre “Komi Science Centre of the Ural Branch of the Russian Academy of Sciences”, 24 ul. Kommunisticheskaya, Syktyvkar 167982, Russian Federation

postgraduate student, Federal Research Centre “Komi Science Centre of the Ural Branch of the Russian Academy of Sciences”, Syktyvkar, Russian Federation; e-mail: bogachuk108@gmail.com.

Anatoly M. Ob’edkov, G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, 49 ul. Tropnina, Nizhny Novgorod 603137, Russian Federation

PhD in Chemistry, Head of the Laboratory, G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Nizhny Novgorod, Russian Federation; e-mail: amo@iomc.ras.ru.

Boris S. Kaverin, Federal Research Centre “Komi Science Centre of the Ural Branch of the Russian Academy of Sciences”, 24 ul. Kommunisticheskaya, Syktyvkar 167982, Russian Federation

PhD in Physics and Mathematics, Leading Researcher, G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Nizhny Novgorod, Russian Federation; e-mail: kaverin@iomc.ras.ru.

Roman N. Skandakov, Federal Research Centre “Komi Science Centre of the Ural Branch of the Russian Academy of Sciences”, 24 ul. Kommunisticheskaya, Syktyvkar 167982, Russian Federation

postgraduate student, Federal Research Centre “Komi Science Centre of the Ural Branch of the Russian Academy of Sciences”, Syktyvkar, Russian Federation; e-mail: scanick@yandex.ru.

Viktor N. Sivkov, Federal Research Centre “Komi Science Centre of the Ural Branch of the Russian Academy of Sciences”, 24 ul. Kommunisticheskaya, Syktyvkar 167982, Russian Federation, Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky prospekt, Syktyvkar 167000, Russian Federation

DSc in Physics and Mathematics, Senior Researcher, Federal Research Centre “Komi Science Centre of the Ural Branch of the Russian Academy of Sciences”; Professor, Pitirim Sorokin Syktyvkar State University, Syktyvkar, Russian Federation; e-mail: SVN@dm.komisc.ru

Published
2020-03-20
How to Cite
Nekipelov, S. V., Mingaleva, A. E., Petrova, O. V., Sivkov, D. V., Bogachuk, D. V., Ob’edkov, A. M., Kaverin, B. S., Skandakov, R. N., & Sivkov, V. N. (2020). NEXAFS and XPS Studies of Cr/MWCNT Composites. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 22(1). https://doi.org/10.17308/kcmf.2020.22/2531
Section
Статьи