Phase Equilibria in the Sn–As–Sb System with Tin Concentrations of Less than 50 mol%
Abstract
Tin- and antimony-based alloys, including SnSb and other compounds of the AIVBV type, are used for the production of anodes for Li+- and Na+ion batteries. Multicomponent solid solutions allow varying the properties of the material and improve the technical characteristics of the anodes. There is very little information in the literature about solid phase solubility in the Sn–As–Sb system, and the phase diagram of the system has not been studied yet. The aim of this paper was to study the polythermal sections SnAs–Sb and SnAs–SnSb using the X-ray diffraction analysis (XRD) and differential thermal analysis (DTA), as well as to construct a phase equilibria scheme for the Sn–As–Sb system with the range of tin
concentrations of less than 50 mol%.
The alloys of the polythermal sections SnAs–Sb and SnAs–SnSb were obtained from pre-synthesized binary compounds and then subjected to homogenizing annealing. The obtained powdered samples were then investigated using differential thermal analysis (DTA) and X-ray diffraction analysis (XRD).
The XRD results showed that all the studied alloys were heterophase mixtures of solid solutions (SnAs), (SnSb) and a¢, where a¢ is a solid solution of tin in the As1–xSbx phase. The concentration range of solid solutions based on binary compounds at room temperature was below 10 mol %. The DTA demonstrated that in several alloys of the two sections the fi rst endothermic effect was observed at the same temperature (393±2oС). This temperature corresponds to the peritectic process involving the above-mentioned phases: L + a¢ ↔ (SnAs) + (SnSb). Using the DTA method and the XRD data, Т–х diagrams of polythermal sections SnAs–Sb and SnAs–SnSb were constructed.
The coordinates of the invariant peritectic equilibrium L + a¢ ↔ (SnAs) + (SnSb) were determined; a scheme of phase equilibria in the Sn–As–Sb system with the range of tin concentrations of less than 50 mol % was proposed. To construct a complete scheme of phase equilibria in the ternary system, it is necessary to further investigate the SnAs–Sn4Sb3 and Sn4As3–Sn4Sb3 sections.
REFERENCES
- Hu Y., Lu Y. 2019 Nobel Pprize for the Li-ion batteries and new opportunities and challenges in Na-ion batteries. ACS Energy Letters. 2019;4(11): 2689–2690. DOI: https://doi.org/10.1021/acsenergylett.9b02190
- Song K., Liu C., Mi L., Chou S., Chen W., Shen C. Recent progress on the alloy-based anode for sodiumion batteries and potassium-ion batteries. Small. 2019;334: 1903194. DOI: https://doi.org/10.1002/smll.201903194
- Kulova T. L., Skundin A. M.. From lithium-ion to sodium-ion battery. Russian Chemical Bulletin. 2017;66(8): 1329–1335. DOI: https://doi.org/10.1007/s11172-017-1896-3
- Jing W. T., Yang C. C., Jiang Q. Recent progress on metallic Sn- and Sb-based anodes for sodium-ion batteries. Journal of Materials Chemistry A. 2020; Advance Article. DOI:
https://doi.org/10.1039/C9TA11782B - Kamali A. R., Fray D. J. Tin-based materials as advanced anode materials for lithium ion batteries: a review. Reviews on Advanced Material Science. 2011;27: 14–24. Available at:
http://194.226.210.10/e-journals/RAMS/no12711/kamali.pdf - Wachtler M., Winter M., Besenhard J.O. Anodic materials for rechargeable Li-batteries. Journal of Power Sources. 2002;105: 151–160. DOI: https://doi.org/10.1016/S0378-7753(01)00934-X
- Wachtler M., Besenhard J. O., Winter M. Tin and tin-based intermetallics as new anode materials for lithium-ion cells. Journal of Power Sources. 2001;94: 189–193. DOI:
https://doi.org/10.1016/S0378-7753(00)00585-1 - Xie H., Tan X., Luber E. J., Olsen B. C., Kalisvaart W. P., Jungjohann K. L., Mitlin D., Buriak J. M. b-SnSb for sodium ion battery anodes: phase transformations responsible for Eenhanced cycling stability revealed by in situ TEM. ACS Energy Letters. 2018;3(7): 1670–1676. DOI: https://doi.org/10.1021/acsenergylett.8b00762.
- Li H., Wang Q., Shi L., Chen L., Huang X. Nanosized SnSb Alloy Pinning on hard non-graphitic carbon spherules as anode materials for a Li-ion battery. Chemistry of Materials. 2002;14(1): 103–108. DOI: https://doi.org/10.1021/cm010195p
- Huang B., Pan Z., Su X., An L. Tin-based materials as versatile anodes for alkali (earth)-ion batteries. Journal of Power Sources. 2018;395: 41–59. DOI: https://doi.org/10.1016/j.jpowsour.2018.05.063.
- Zhang W., Pang W., Sencadas V., Guo Z. Understanding high-energy-density Sn4P3 anodes for potassium-ion batteries. Joule. 2018;2(8): 1534–1547. DOI: https://doi.org/10.1016/j.joule.2018.04.022
- Jung S. C., Choi J., Han Y. The origin of excellent rate and cycle performance of Sn4P3 binary electrodes for sodium-ion batteries. Journal of Materials Chemistry A. 2018;6(4): 1772–1779. DOI: https://doi.org/10.1039/C7TA07310K
- Domi Y., Usui H., Nakabayashi E., Yamamoto T., Nohira T., Hiroki Sakaguchi H. Potassiation and depotassioation Pproperties of Sn4P3 electrode in an ionic-liquid electrolyte. Electrochemistry. 2019;87(6): 333-335. DOI: https://doi.org/10.5796/electrochemistry.19-00052
- Saddique J., Zhang X., Wu T., Su H., Liu S., Zhang D., Zhang Y., Yu H. Sn4P3-induced crystalline/amorphous composite structures for enhanced sodium-ion battery anodes. Journal of Materials Science & Technology. 2019. In Press. DOI: https://doi.org/10.1016/j.jmst.2019.05.032
- Zhang J., Wang W., Li B. Effect of particle size on the sodium storage performance of Sn4P3. Journal of Alloys and Compounds. 2019;771: 204–208. DOI: https://doi.org/10.1016/j.jallcom.2018.08.271
- Lan D., Li Q. Sn4P3/SbSn nanocomposites for anode application in sodium-ion batteries. ChemElectroChem. 2018;5(17): 2383–2386. DOI: https://doi.org/10.1002/celc.201800639
- Lee K. Synthesis and characterization of tetrel pnictides and compounds in the lithium-tetrel-arsenic system. Dissertation. University of California, Davis; 2016. 136 p. Available at: https://search.proquest.com/openview/6c5577b9817fa2c2864fdeda33e2acfb/1?pq-origsite=gscholar&cbl=18750&diss=y
- Usui H., Domi Y., Yamagami R., Fujiwara K., Nishida H., Sakaguchi H. Sodiation–desodiation reactions of various binary phosphides as novel anode materials of Na-ion battery. ACS Applied Energy Materials. 2018;1(2): 306–311. DOI: https://doi.org/10.1021/acsaem.7b00241
- Liu S., Zhang H., Xu L., Ma L., Chen X. Solvothermal preparation of tin phosphide as a longlife anode for advanced lithium and sodium ion batteries. Journal of Power Sources. 2016;304: 346–353. DOI: https://doi.org/10.1016/j.jpowsour.2015.11.056
- Liu J., Wang S., Kravchyk K., Ibáñez M., Krumeich F., Widmer R., Nasiou D., Meyns M., Llorca J., Arbiol J., Kovalenko M. V., Cabot A. SnP nanocrystals as anode materials for Na-ion batteries. Journal of Materials Chemistry A. 2018;6(23): 10958–10966. DOI: https://doi.org/10.1039/C8TA01492B
- Liu C., Yang X., Liu J., Ye X. Theoretical Prediction of Two-Dimensional SnP3 as a Promising Anode Material for Na-Ion Batteries. ACS Applied Energy Materials. 2018;1(8): 3850–3859. DOI: https://doi.org/10.1021/acsaem.8b00621
- Saddique J, Zhang X., Wu T, Wang X., Cheng X., Su H., Liu S., Zhang L., Li G., Zhang Y., Yu H. Enhanced Silicon Diphosphide-Carbon Composite Anode for Long-Cycle, High-effi cient sodium ion batteries. ACS Applied Energy Materials. 2019;2(3): 2223–2229. DOI: https://doi.org/10.1021/acsaem.8b02242
- Schmetterer С., Polt J., Flandorfer H. The phase equilibria in the Sb-Sn system. Part I: Literature review. Journal of Alloys and Compounds. 2017;728: 497–505. DOI:
https://doi.org/10.1016/j.jallcom. 2017.08.215 - Schmetterer С., Polt J., Flandorfer H. The phase equilibria in the Sb-Sn system. Part II: Experimental results. Journal of Alloys and Compounds. 2018;743: 523–536. DOI: https://doi.org/10.1016/j.jallcom.2017.11.367
- Kovnir K. A., Kolen’ko Yu. V., Baranov A. I., Neira I. S., Sobolev A. V., Yoshimura M., Presniakov I. A., Shevelkov A. V. A Sn4As3 revisited: Solvothermal synthesis and crystal and electronic structure. Journal of Solid State Chemistry. 2009;182(3): 630–639. DOI: https://doi.org/10.1016/j.jssc.2008.12.007
- Kovnir K. A., Kolen’ko Yu. V., Ray S., Li J., Watanabe T., Itoh M., Yoshimura M., Shevelkov A. V. A facile high-yield solvothermal route to tin phosphide Sn4P3. Journal of Solid State Chemistry. 2006;179(12): 3756–3762. DOI: https://doi.org/10.1016/j.jssc.2006.08.012
- Semenova G. V., Goncharov E. G. Tverdye rastvory v trojnyh sistemah s uchastiem jelementov pjatoj gruppy [Solid solutions involving elements of the fi fth group]. Мoscow: MFTI Publ.; 2000. 160 p. (in Russ.)
- Woo K. E., Dolyniuk J., Kovnir K. Superseding van der Waals with electrostatic interactions: intercalation of Cs into the interlayer space of SiAs2. Inorganic Chemistry.2019;58(8): 4997–5005. DOI: https://doi.org/10.1021/acs.inorgchem.9b00017
- Semenova G. V., Kononova E. Yu., Sushkova T. P. Polythermal section Sn4P3–Sn4As3. Russian Journal of Inorganic Chemistry. 2013;58: 1242–1245. DOI: https://doi.org/10.7868/S0044457X13090201
- Kononova E. Yu., Semenova G. V., Sinyova S. I., Sushkova T. P. Phase equilibria in the Sn–As–Ge and Sn–As–P systems. Journal of Thermal Analysis and Calorimetry. 2014;117(3): 1171–1177. DOI: https://doi.org/10.1007/s10973-014-3883-3
- Sushkova T. P, Semenova G. V., Naumov A. V., Proskurina E. Yu. Solid solutions in the system Sn-As-P. Vestnik VGU. Serija: Himija. Biologija. Farmacija = Proceedings of Voronezh State University. Series: Chemistry. Biology. Pharmacy. 2017;3: 30–36. Available at: http://www.vestnik.vsu.ru/pdf/chembio/2017/03/2017-03-05.pdf (In Russ., abstract in Eng.)
- Semenova G. V., Sushkova T. P., Zinchenko E. N., Yakunin S. V. Solubility of phosphorus in tin monoarsenide. Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases. 2018;20(4): 644–649. DOI: https://doi.org/10.17308/kcmf.2018.20/639
- Okamoto H., Subramanian P. R., Kacprzak L., Massalski T. B. Binary Alloy Phase Diagrams, Second Edition. Ohio: ASM International, Materials Park; 1990. 810 p.
- Allen W. P., Perepezko J. H. Solidifi cation of undercooled Sn-Sb peritectic alloys: Part 1. Microstructural evolution. Metallurgical Transactions A. 1991;22: 753–764. DOI: https://doi.org/10.1007/BF02670298
- Gokcen N. A. The As-Sn (Tin-Arsenic) system. Bulletin of alloy phase diagrams. 1990;11(3): 271–278. DOI: https://doi.org/10.1007/bf03029298
- Emsli Dzh. Elementy. Moscow: Mir Publ; 1993. 256 c. (in Russ.)
Downloads
Copyright (c) 2020 Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.