The Physics of Interfacial Adhesion between a Polymer Matrix and Carbon Nanotubes (Nanofi bers) in Nanocomposites
Abstract
The aim of this study was to investigate the physics of interfacial adhesion in polymer/carbon nanotube systems. The studywas carried out on polypropylene/carbon nanotube (nanofi ber) nanocomposites employing fractal analysis.
Due to a high degree of anisotropy and low bending stiffness, carbon nanotubes (nanofi bers) form ring-like structures in the polymer matrix of the nanocomposite, which are structural analogue of macromolecular coils of branched polymers. This allowed us to simulate the structure of polymer/carbon nanotube (nanofi ber) nanocomposites as a polymer solution, using the methods of fractal physical chemistry. Using this approach we assume that macromolecular coils are represented by the ring-like structures of carbon nanotubes and the solvent is represented by the polymer matrix. The suggested model can be used to perform structural analysis of the level of interfacial interaction between the polymer matrix and the nanofi ller, i.e. the level of interfacial adhesion. The analysis demonstrated that most contacts between carbon nanotubes and the polymer matrix, which determine the adhesion level, take place inside the ring-like structures. The fractal analysis showed that a decrease in the radius of the ring-like structures or their compactization increases the fractal dimension, which makes it diffi cult for the matrix polymer to penetrate into these structures. This results in a decrease in the number of contacts between the polymer and the nanofi ller and a signifi cant reduction of the level of interfacial adhesion. This effect can also be described as the consequence of compactization of the ring-like structures, demonstrated by the increased density. The article shows a direct correlation between the value of interfacial adhesion (dimensionless parameter ba), the number of contacts between the polymer and carbon nanotubes, and the volume of the ring-like structures, accessible for penetration by the polymer. The quantitative analysis demonstrated, that the number of interactions occurring on the
surface of ring-like structures of carbon nanotubes (nanofi bers) is only ~ 7–10 %. The suggested model allowed us to determine the correlation between the structure of the nanofi ller in the polymer matrix and the level of interfacial adhesion for this class of nanocomposites.
The results of our study can be used to defi ne the structure of carbon nanotubes (nanofi bers) necessary to obtain the highest level of interfacial adhesion.
REFERENCES
1. Mikitaev A. K., Kozlov G. V., Zaikov G. E. Polymer Nanocomposites: Variety of structural forms and
applications. New York: Nova Science Publishers, Inc., 2008. 319 p.
2. Kozlov G. V., Dolbin I. V. Transfer of mechanical stress from polymer matrix to nanofi ller in dispersionbαfi lled nanocomposites. Inorganic Mater.: Appl. Res. 2019;10(1): 226–230. DOI: https://doi.org/10.1134/s2075113319010167
3. Dolbin I. V., Karnet Yu. N., Kozlov G. V., Vlasov A. N. Mechanism of growth of interfacial
regions in polymer/carbon nanotube nanocomposites. Composites: Mechanics, Computations, Applications: An Intern. J. 2018;10(3): 213–220. DOI: https://doi.org/10.1615/CompMechComputApplIntJ.2018029234
4. Kozlov G. V., Dolbin I. V. The effect of uniaxial extrusion of the degree of reinforcement of
nanocomposites polyvinyl chloride/boron nitride. Inorganic Mater.: Appl. Res. 2019;10(3): 642–646. DOI:
https://doi.org/10.1134/S2075113319030183
5. Moniruzzaman M., Winey K. I. Polymer nanocomposites containing carbon nanotubes.
Macromolecules. 2006;39(16): 5194–5206. DOI: https://doi.org/10.1021/ma060733p
6. Thostenson E. T. , Li C., Chou T.-W. Nanocomposites in contex. Composites Sci. Techn.
2005;65(2): 491–516. DOI: https://doi.org/10.1016/j.compscitech.2004.11.003
7. Kozlov G. V., Dolbin I. V. The description of elastic modulus of nanocomposites polyurethane/
graphene within the framework of modifi ed blends rule. Materials Physics and Mechanics. 2018;40(2):
152–157. DOI : https://doi.org/10.18720/MPM.4022018_3
8. Kozlov G. V., Dolbin I. V. The fractal model of mechanical stress transfer in nanocomposites
polyurethane/carbon nanotubes. Letters on Materials. 2018;8(1): 77–80. DOI: https://doi.org/10.22226/2410-3535-2018-1-77-80 (In Russ., abstract in Eng.)
9. Kozlov G. V., Dolbin I. V., Koifman O. I. A fractal model of reinforcement of carbon polymer–nanotube
composites with ultralow concentrations of nanofi ller. Doklady Physics. 2019;64(5): 225–228. DOI: https://doi.org/10.1134/S1028335819050021
10. Kozlov G. V., Dolbin I.V. Structural model of efficiency of covalent functionalization of carbon
nanotubes. Izvestiya Vysshikh Uchebnykh Zavedenii, Seriya Khimiya i Khimicheskaya Tekhnologiya.
2019;62(10): 118–123. DOI: https://doi.org/10.6060/ivkkt.20196210.5962 (In Russ., abstract in Eng.)
11. Schaefer D. W., Justice R. S. How nano are nanocomposites? Macromolecules. 2007;40(24):
8501–8517. DOI : https://doi.org/10.1021/ma070356w
12. Atlukhanova L. B., Kozlov G. V., Dolbin I. V. Structural model of frictional processes for polymer/
carbon nanotube nanocomposites. Journal of Friction and Wear. 2019;40(5). 475–479. DOI: https://doi.org/10.3103/S1068366619050027
13. Yanovsky Yu. G., Kozlov G. V., Zhirikova Z. M., Aloev V. Z., Karnet Yu. N. Special features of the
structure of carbon nanotubes in polymer composite media. Nanomechanics. Sci. Technol.: An Intern. J.
2012;3(2). 99–124. DOI: https://doi.org/10.1615/NanomechanicsSciTechnolIntJ.v3.i2.10
14. Kozlov G. V., Dolbin I. V. Infl uence of the nanofi ller interactions on the reinforcement degree
of the nanocomposites of polymer/carbon nanotubes. Nano- i mikrosistemnaya tekhnika = Nano- and
Microsystems Technology. 2018;20(5): 259–266. DOI: https://doi.org/10.17587/nmst.20.259-266 (In Russ.,
abstract in Eng.)
15. Kozlov G. V., Dolbin I. V. Interrelation between elastic moduli of fi ller and polymethyl methacrylatecarbon nanotube nanocomposites. Glass Physics and Chemistry. 2019;45(4): 277–280. DOI: https://doi.org/10.1134/S1087659619040060
16. Kozlov G.V., Dolbin I.V., Zaikov G.E. The Fractal Physical Chemistry of Polymer Solutions and Melts.
Toronto, New Jersey: Apple Academic Press, 2014; 316 p.
17. Bridge B. Theoretical modeling of the critical volume fraction for percolation conductivity of fi breloaded conductive polymer composites. J. Mater. Sci. Lett. 1989;8(2): 102–103. DOI: https://doi.org/10.1007/BF00720265
18. Kozlov G. V., Zaikov G. E. Structure of the Polymer Amorphous State. Utrecht, Boston: Brill
Academic Publishers; 2004. 465 p.
19. Puertolas J. A., Castro M., Morris J. A., Rios R., Anson-Casaos A. Tribological and mechanical
properties of grapheme nanoplatelet/PEEK composites. Carbon. 2019;141(1): 107–122. DOI: https://doi.org/10.1016/j.carbon.2018.09.036
20. Zhang M., Zhang W., Jiang N., Futaba D. N., Xu M. A general strategy for optimizing composite
properties by evaluating the interfacial surface area of dispersed carbon nanotubes by fractal dimension.
Carbon. 2019;154(2): 457–465. DOI: https://doi.org/10.1016/j.carbon.2019.08.017
21. Kozlov G. V., Dolbin I. V. Effect of a nanofi ller structure on the degree of reinforcement of polymer–
carbon nanotube nanocomposites with the use of a percolation model. Journal of Applied Mechanics and
Technical Physics. 2018;59(4): 765–769. DOI: https://doi.org/10.1134/S0021894418040259
22. Kozlov G. V., Dolbin I. V. Structural interpretation of variation in properties of polymer/carbon nanotube
nanocomposites near the nanofiller percolation threshold. Technical Physics. 2019;64(10): 1501–1505.
DOI: https://doi.org//10.1134/S1063784219100128
23. Kozlov G. V., Zaikov G. E. The structural stabilization of polymers: Fractal Models. Leiden,
Boston: Brill Academic Publishers; 2006. 345 p.
24. Kozlov G. V., Dolbin I. V. Modeling of carbon nanotubes as macromolecular coils. Melt viscosity.
High Temperature. 2018;56(5): 830–832. DOI: https://doi.org/10.1134/S0018151X18050176
25. Kozlov G. V., Dolbin I. V. Viscosity of a melt of polymer/carbon nanotube nanocomposites. Ananalogy with a polymer solution. High Temperature. 2019;57(3): 441–443. DOI: https://doi.org/10.1134/S0018151X19030088
26. Kozlov G. V., Dolbin I. V. The simulation of carbon nanotubes as macromolecular coils: Interfacial
adhesion. Materials Physics and Mechanics. 2017;32(2): 103–107. DOI: https://doi.org/10.18720/MPM.3222017-1
27. Kozlov G. V., Dolbin I. V. Fractal model of the nanofiller structure affecting the degree of
reinforcement of polyurethane–carbon nanotube nanocomposites. Journal of Applied Mechanics and
Technical Physics. 2018;59(3): 508–510. DOI: https://doi.org/10.1134/S002189441803015X
28. Dolbin I. V., Kozlov G. V. Structural version of Ostwald-de Waele equation: Fractal treatment. Fluid
Dynamics. 2019;54(2): 288–292. DOI: https://doi.org/10.1134/S0015462819010051
29. Atlukhanova L. B., Kozlov G. V., Dolbin I. V. The correlation between the nanofi ller structure and the
properties of polymer nanocomposites: fractal model. Inorganic Mater.: Appl. Res. 2020;11(1): 188–191. DOI: https://doi.org/10.1134/S2075113320010049
30. Kozlov G. V., Yanovskii Yu. G., Zaikov G. E. Structure and properties of particulate-fi lled polymer
composites: the fractal analysis. New York: Nova Science Publishers, Inc.; 2010. 282 p.
31. Shaffer M. S. P., Windle A. H. Analogies between polymer solutions and carbon nanotube despersions.
Macromolecules. 1999;32(2): 6864–6866. DOI: https://doi.org/10.1021/ma990095t
32. Yi Y. B., Berhan L., Sastry A. M. Statistical geometry of random fibrous networks revisited:
waviness, dimensionality and percolation. Journal of Applied Physics. 2004;96(7): 1318–1327. DOI: https://doi.org/10.1063/1.1763240
33. Berhan L., Sastry A. M. Modeling percolation in high-aspect-ratio fi ber systems. I. Soft-core versus
hard-core models. Physical Review E – Statistical, Nonlinear, and Soft Matter Physics. 2007;75(23):
041120. DOI: https://doi.org/10.1103/PhysRevE.75.041120
34. Shi D.-L., Feng X.-Q., Huang Y.Y., Hwang K.-C., Gao H. The effect of nanotube waviness and
agglomeration on the elastic property of carbon nanotube-reinforced composites. Journal of Engineering
Materials and Technology, Transactions of the ASME. 2004;126(2): 250–257. DOI : https://doi.org/10.1115/1.1751182
35. Lau K.-T., Lu M., Liao K. Improved mechanical properties of coiled carbon nanotubes reinforced epoxy
nanocomposites. Composites. Part A. 2006;37(6): 1837–1840. DOI : https://doi.org/10.1016/j.compositesa.2005.09.019
36. Martone A., Faiella G., Antonucci V., Giordano M., Zarrelli M. The effect of the aspect ratio
of carbon nanotubes of their effective reinforcement modulus in an epoxy matrix. Composites Sci. Techn.
2011;71(8): 1117–1123. DOI: https://doi.org/10.1016/j.compscitechn.2011.04.002
37. Shao L. H., Luo R. Y., Bai S. L., Wang J. Prediction of effective moduli of carbon nanotube – reinforced
composites with waviness and debonding. Composite Struct. 2009;87(3): 274–281. DOI: https://doi.org/10.1016/j.compstruct.2008.02.011
38. Omidi M., Hossein Kokni D. T., Milani A. S., Seethaller R. J., Arasten R. Prediction of the mechanical
characteristics of multi-walled carbon nanotube/epoxy composites using a new form of the rule of mixtures. Carbon. 2010;48(11): 3218–3228. DOI: https://doi.org/10.1016/j.carbon.2010.05.007
39. Shady E., Gowayed Y. Effect of nanotube geometry on the elastic properties of nanocomposites.
Composites Sci. Techn. 2010;70(10): 1476–1481. DOI: https://doi.org/10.1016/j.compscitech.2010.04.027
Downloads
Copyright (c) 2020 Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.