The Study of the Luminescence of Solid Solutions Based on Yttrium Fluoride Doped with Ytterbium and Europium for Photonics

Keywords: rare earth fl uorides, phosphors, solar panels, down-conversion luminescence

Abstract

The majority of the global market for solar photovoltaic devices is based on silicon technology. It is very important to increase their effi ciency through the use of luminescent coatings, including those converting radiation from the UV-blue region of the spectrum into the near-infrared range, where silicon absorbs radiation most effi ciently (Stokes or downconversion luminescence), or from the infrared region of the spectrum in the near-infrared range (up-conversion luminescence). The aim of this research was to synthesize and study the spectral-kinetic characteristics of single-phase solid solutions of Y1–x–yEuxYbyF3 and to determine the quantum yield of down-conversion luminescence.
Using the method of high-temperature melting, single-phase samples of solid solutions of Y1–x–yEuxYbyF3 with orthorhombic system were synthesized. For the series of samples with different Eu3+/Yb3+ ratios, upon double doping with these ions, the formation of the corresponding solid solutions with a crystal lattice of the b-YF3 phase was confi rmed. Their chemical composition was determined using the energy dispersion analysis, and it was established that it corresponds to the nominal one. It was shown that both Eu3+ and Yb3+ ions become luminescent upon excitation at wavelengths of 266 nm and 296 nm.
This indicates these compounds as promising sensitisers of UV radiation. In this case, upon excitation at a wavelength of 266 nm, luminescence of Eu2+ ions was recorded. The maximum quantum yield values (2.2 %) of the ytterbium downconversion luminescence in the near-infrared wavelength range upon excitation at a wavelength of 266 nm were recorded for YF3:Eu:Yb with the Eu3+:Yb3+ ratios of 0.1:10.0 and 0.05:5.00.

 

 

 

REFERENCES

1. Weber E. R. Photovoltaics moving into the terawatt age. In: Proc. SPIE 10368, Next Generation
Technologies for Solar Energy Conversion VIII. 2017;10368: 1036803. DOI: https://doi.org/10.1117/12.2277978
2. Seibt M., Kveder V. Gettering Processes and the Role of Extended Defects. In: Advanced Silicon Materials
for Photovoltaic Applications. John Wiley & Sons, Ltd; 2012. pp. 127–188. DOI: https://doi.org/10.1002/9781118312193.ch4
3. Turkevych I., et al. Strategic advantages of reactive polyiodide melts for scalable perovskite
photovoltaics. Nature Nanotechnology. 2019:14(1): 57–63. DOI: https://doi.org/10.1038/s41565-018-0304-y
4. Abdollahi Nejand B., et al. Vacuum-assisted growth of low-bandgap thin fi lms (FA 0.8 MA 0.2 Sn
0.5 Pb 0.5 I 3) for all-perovskite tandem solar cells. Advanced Energy Materials. 2020;10(5): 1902583. DOI:
https://doi.org/10.1002/aenm.201902583
5. Im J. H., et al. 6.5 % efficient perovskite quantum-dot-sensitized solar cell. Nanoscale.
2011;3(10): 4088–4093. DOI: https://doi.org/10.1039/C1NR10867K
6. Huang X., Sanyang H., Wei H., Xiaogang L. Enhancing solar cell efficiency: the search for
luminescent materials as spectral converters. Chemical Society Reviews. 2013;42(1): 173–201. DOI: https://doi.org/10.1039/C2CS35288E
7. Trupke T., Green M. A., Würfel P. Improving solar cell effi ciencies by down-conversion of high-energy
photons. Journal of Applied Physics. 2002;92(3): 1668–1674. DOI: https://doi.org/10.1063/1.1492021
8. Yao H., Shen H., Tang Q. Highly luminescent up/down conversion thin fi lms prepared by a room
temperature process. Thin Solid Films. 2019;683: 1–7. DOI: https://doi.org/10.1016/j.tsf.2019.05.010
9. Loiko P. A., Khaidukov N. M., Mendez-Ramos J., Vilejshikova E. V., Skoptsov N. A., Yumashev K. V. Upand
down-conversion emissions from Er3+ doped K2YF5 and K2YbF5 crystals. Journal of Luminescence. 2016;170: 1 – 7. D O I : https://doi.org/10.1016/j.jlumin.2015.10.016
10. Li L., Lou C., Cao H., Diao H., Karunakaran S. K. Enhancing concentrator monocrystalline Si solar cells
by down conversion Ce3+-Yb3+ co-doped YAG phosphors. Applied Physics Letters. 2018;113(10): 101905. DOI: https://doi.org/10.1063/1.5043221
11. Serrano D., Braud A., Doualan J.-L., Camy P., Benayad A., Menard V., Moncorge R. Ytterbium
sensitization in KY3F10: Pr3+, Yb3+ for silicon solar cells effi ciency enhancement. Optical Materials. 2011;33(7): 1028–1031. DOI: https://doi.org/10.1016/j.optmat.2010.07.023
12. Fischer S., Ivaturi A., Jakob P., Krämer K. W., Martin-Rodriguez R., Meijerink A., Goldschmidt J. C.
Upconversion solar cell measurements under real sunlight. Optical Materials. 2018;84: 389–395. DOI:
https://doi.org/10.1016/j.optmat.2018.05.072
13. Kuznetsov S., Ermakova Y., Voronov V., Fedorov P., Busko D., Howard I. A., Turshatov A. Upconversion
quantum yields of SrF2:Yb3+, Er3+ submicron particles prepared by precipitation from
aqueous solution. Journal of Materials Chemistry C. 2018;6(3): 598–604. DOI: https://doi.org/10.1039/C7TC04913G
14. Fischer S., Ivaturi A., Jakob P., Krämer K. W., Martin-Rodriguez R., Meijerink A., Richards B.,
Goldschmidt J. C. Upconversion solar cell measurements under real sunlight. Optical Materials. 2018;84:
389–395. DOI: https://doi.org/10.1016/j.optmat.2018.05.072
15. Lyapin A. A., Gushchin S. V., Kuznetsov S. V., Ryabochkina P. A., Ermakov A. S., Proydakova V. Yu.,
Voronov V. V., Fedorov P. P., Artemov S. A., Yapryntsev A. D., Ivanov V. K. Infrared-to-visible
upconversion luminescence in SrF2:Er powders upon excitation of the 4I13/2 level. Optical Materials Express. 2018;8(7): 1863–1869. DOI: https://doi.org/10.1364/OME.8.001863
16. Rozhnova Yu. A., Kuznetsov S. V., Fedorov P. P., Voronov V. V. Synthesis of up-conversion Ho3+ and Er3+
doped strontium fl uoride luminophores for visualiser of two-micron radiation. Kondensirovannye sredy i
mezhfaznye granitsy = Condensed Matter and Interphases. 2016;18(3): 408–413. Available at:https://journals.vsu.ru/kcmf/article/view/150/107 (In Russ., abstract in Eng.)
17. Alexandrov А. А., Mayakova M. N., Voronov V. V., Pominova D. V., Kuznetsov S. V., Baranchikov A. E.,
Ivanov V. K., Lysakova E. I., Fedorov P. P. Synthesis of upconversion luminophores based on calcium fl uoride. Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases. 2020;22(1): 3–10. DOI: https://doi.org/10.17308/kcmf.2020.22/2524
18. Van Der Ende B. M., Aarts L., Meijerink A. Nearinfrared quantum cutting for photovoltaics. Advanced
Materials. 2009;21(30): 3073–3077. DOI: https://doi.org/10.1002/adma.200802220
19. Piper W. W., DeLuca J. A., Ham F. S. Cascade fl uorescent decay in Pr3+-doped fl uorides: Achievement
of a quantum yield greater than unity for emission of visible light. Journal of Luminescence. 1974;8(4):
344–348. DOI:https://doi.org/10.1016/0022-2313(74)90007-6
20. Yasyrkina D. S., Kuznetsov S. V., Ryabova A. V., Pominova D. V., Voronov V. V., Ermakov R. P.,
Fedorov P. P. Dependence of quantum yield of upconversion luminescence on the composition of
fluorite-type solid solution NaY1–x–yYbxEryF4. Nanosystems: Physics, Chemistry, Mathematics.2013;4(5): 648–656. Available at: http://nanojournal.ifmo.ru/en/articles-2/volume4/4-5/physics/paper07/
21. Ding M., Lu C., Cao L., Song J., Ni Y., Xu Z. Facile synthesis of b-NaYF4:Ln3+ (Ln = Eu, Tb, Yb/Er, Yb/Tm)
microcrystals with down- and up-conversion luminescence. Journal of Materials Science. 2013;48(14):
4989–4998. DOI: https://doi.org/10.1007/s10853-013-7285-x
22. Tao F., Wang Z., Yao L., Weili C., Li X. Synthesis and photoluminescence properties of truncated
octahedral Eu-Doped YF3 submicrocrystals or nanocrystals. The Journal of Physical Chemistry C.
2007;111(8): 3241–3245. DOI: https://doi.org/10.1021/jp065905z
23. Sveshnikov B. Ya., Shirokov V. V. On the dependence of measurements of the average duration
and yield of luminescence during quenching on the law of interaction of molecules. Optika i spektroskopiya
[Opt. Spectrosc. (USSR)]. 1962;12(5): 320.
24. Kuznetsov S. V., Nizamutdinov A. S., Proydakova V. Yu., Madirov E. I., Voronov V. V., Yapryntsev A. D.,
Ivanov V. K., Gorieva V. G., Marisov M. A., Semashko V. V., Fedorov P. P. Synthesis and luminescence of
Sr1–x–yYbxEuyF2+x+y solid solutions for photonics. Inorganic Materials. 2019;55(10): 1031–1038. DOI:
https://doi.org/10.1134/S0002337X19100087

Downloads

Download data is not yet available.

Author Biographies

Sergey V. Kuznetsov, Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov str., Moscow 119991, Russian Federation

PhD in Chemistry, Leading
Researcher, Prokhorov General Physics Institute of the
Russian Academy of Sciences, Moscow, Russian
Federation; e-mail: kouznetzovsv@gmail.com

Aleksei S. Nizamutdinov, Kazan Federal University, 18 Kremlyovskaya str., Kazan 420008, Russian Federation

PhD in Physics and
Mathematics, Associate Professor, Kazan Federal
University; Kazan, Russian Federation; e-mail:
anizamutdinov@mail.ru

Eduard I. Madirov, Kazan Federal University, 18 Kremlyovskaya str., Kazan 420008, Russian Federation

Postgraduate student, Kazan
Federal University, Kazan, Russian Federation; e-mail:ed.madirov@gmail.com.

Vasilii A. Konyushkin, Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov str., Moscow 119991, Russian Federation

PhD in Technical Sciences,
Head of Laboratory, Prokhorov General Physics
Institute of the Russian Academy of Sciences, Moscow,
Russian Federation

Andrei N. Nakladov,, Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov str., Moscow 119991, Russian Federation

Research Fellow, Prokhorov
General Physics Institute of the Russian Academy of
Sciences, Moscow, Russian Federation

Valery V. Voronov, Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov str., Moscow 119991, Russian Federation

PhD in Physics and Mathematics,
Head of Laboratory, Prokhorov General Physics
Institute of the Russian Academy of Sciences, Moscow,
Russian Federation; e-mail: voronov@lst.gpi.ru.

Aleksei D. Yapryntsev, Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., Moscow, 119991 Russian Federation

Postgraduate student,
Kurnakov Institute of General and Inorganic Chemistry
of the Russian Academy of Sciences, Moscow, Russian
Federation

Vladimir K. Ivanov, Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., Moscow, 119991 Russian Federation

DSc in Chemistry, Associate
Member of the Russian Academy of Sciences, Director
of the Kurnakov Institute of General and Inorganic
Chemistry of the Russian Academy of Sciences,
Moscow, Russian Federation; e-mail: van@igic.ras.ru.

Vadim V Semashko, Kazan Federal University, 18 Kremlyovskaya str., Kazan 420008, Russian Federation

DSc in Physics and Mathematics,
Professor, Kazan Federal University, Kazan, Russian
Federation

Pavel P. Fedorov, Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov str., Moscow 119991, Russian Federation

DSc in Chemistry, Head of
Department, Prokhorov General Physics Institute of
the Russian Academy of Sciences, Moscow, Russian
Federation; e-mail: ppfedorov@yandex.ru.

Published
2020-06-25
How to Cite
Kuznetsov, S. V., Nizamutdinov, A. S., Madirov, E. I., Konyushkin, V. A., Nakladov, A. N., Voronov, V. V., Yapryntsev, A. D., Ivanov, V. K., Semashko, V. V., & Fedorov, P. P. (2020). The Study of the Luminescence of Solid Solutions Based on Yttrium Fluoride Doped with Ytterbium and Europium for Photonics. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 22(2), 225-231. https://doi.org/10.17308/kcmf.2020.22/2834
Section
Статьи