Obtaining Iron (III) – Containing Triple Molybdate K5FeZr(MoO4)6 by Sol-Gel Technology

  • Aleksandra V. Logvinova Baikal Institute of Nature Management, Siberian Branch of the Russian Academy of Sciences, 6 ul. Sakhyanova, Ulan-Ude 670047, Republic of Buryatia, Russian Federation https://orcid.org/0000-0001-9850-2719
  • Bair G. Bazarov Baikal Institute of Nature Management, Siberian Branch of the Russian Academy of Sciences, 6 ul. Sakhyanova, Ulan-Ude 670047, Republic of Buryatia, Russian Federation; Buryat State University, 24a ul. Smolina, Ulan-Ude 670000, Republic of Buryatia, Russian Federation https://orcid.org/0000-0003-1712-6964
  • Jibzema G. Bazarova Baikal Institute of Nature Management, Siberian Branch of the Russian Academy of Sciences, 6 ul. Sakhyanova, Ulan-Ude 670047, Republic of Buryatia, Russian Federation https://orcid.org/0000-0002-1231-0116
Keywords: iron-containing, triple molybdate, zirconium, potassium series, sol-gel synthesis

Abstract

Oxide compounds, as the basis of promising materials, are used in various fields of modern technologies due to their electrical and optical properties. Some of them, possessing a combination of ferroelectric, scintillation, electrical, and optical properties, are being studied as promising materials for electronics. In this case, their dispersion plays an important role.
Traditionally, the synthesis of oxide compounds is carried out by ceramic technology. More promising for the synthesis of fine powders are the methods of “soft” chemistry, among which we have identified and applied the sol-gel method. In this method, “mixing” occurs at the molecular level, which contributes to an increase in the reaction rates and a decrease in the synthesis temperature. The method involves the use of inorganic salts as precursors in combination with complexing agents (citric acid). The use of such precursors allows one to achieve high uniformity at relatively low temperatures. A
feature of this approach is the use of fewer organic compounds: an aqueous solution of citric acid is used as a chelating agent. The aim of this work was to obtain triple molybdate by sol-gel technology (SGT) based on the example of ironcontaining potassium zirconium molybdate.
The iron-containing triple potassium zirconium molybdate was obtained using the of citrate sol-gel technology and solidphase synthesis (SPS) methods. The triple molybdate obtained by two methods was characterized by X-ray phase analysis, DSC, and impedance spectroscopy.
The developed sol-gel synthesis technique allowed lowering the synthesis temperature, to obtain triple molybdate with high values of homogeneity, dispersion, and electrical conductivity. This technique can be used to obtain double and triple zirconium (hafnium) molybdates containing a trivalent cation.

 

 

 

REFERENCES

1 . Sorokin N. I. Ionic conductivity of
KMgCr(MoO4)3 molybdate . Crystallography
Reports. 2017;62(3): 416–418. DOI: https://doi.org/10.1134/s106377451703021x
2. Pavlova Je. T., Cyrenova G. D., Lazorjak B. I.,
Solodovnikov S. F. Structure and properties of double
silver-containing molybdates of the composition
Ag2A2(MoO4)3 (A = Mg, Mn, Cu). BSU bulletin. Chemistry.
Physics. 2015;3: 3–7. Available at: https://elibrary.ru/item.asp?id=23233672 (In Russ., abstract in Eng.)
3. Savina A. A., Solodovnikov S. F., Belov D. A.,
Basovich O. M., Solodovnikova Z. A., Pokholok K. V.,
Stefanovich S. Yu., Lazoryak B. I., Khaikina E. G.
Synthesis, crystal structure and properties of
alluaudite-like triple molybdate Na25Cs8Fe5(MoO4)24.
Journal of Solid State Chemistry. 2014;220: 217–220.
DOI: https://doi.org/10.1016/j.jssc.2014.09.004
4. Jena P., Nallamuthua N., Patro P. K., Venkateswarlu
M., Satyanarayana N. Structural characterization
and electrical conductivity studies of BaMoO4
nanorods prepared by modified acrylamide assisted
sol–gel process. Advances in Applied Ceramics.
2014;113(6): 372–379. DOI: https://doi.org/10.1179/1743676114Y.0000000170
5. Balsanova L. V. The synthesis of crystals of silver
oxide phases based on molybdenum, investigation of
their structure and properties. Vestnik VSGUTU.
2015;5(56). 63–69. Available at: https://vestnik.esstu.ru/arhives/VestnikVsgutu5_2015.pdf (In Russ.,
abstract in Eng.)
6. Dorzhieva S. G., Bazarov B. G., Bazarova Zh. G.
New molybdates in Rb2MoO4-MI2MoO4-Zr(MoO4)2
(MI = Na, K) systems as promising ion-conducting
materials. Letters on Materials. 2019;9(1): 17–21. DOI:
https://doi.org/10.22226/2410-3535-2019-1-17-21 (In
Russ., abstract in Eng.)
7. Spiridonova T. S., Solodovnikov S. F., Savina A. A.,
Kadyrova Y. M., Solodovnikova Z. A., Yudin V. N.,
Stefanovich S. Y. and. Khaikina E. G. New triple
molybdate Rb2AgIn(MoO4)3: synthesis, framework
crystal structure and ion-transport behavior. Acta
Crystallographica C Structural Chemistry. 2018;74(12):
1603–1609. DOI: https://doi.org/10.1107/S2053229618014717
8. Lim C. S., Aleksandrovsky A. S., Molokeev M. S.,
Oreshonkov A. S., Ikonnikov D. A. and Atuchin V. V.
Triple molybdate scheelite-type upconversion
phosphor NaCaLa(MoO4)3: Er3+/Yb3+: structural and
spectroscopic properties. Dalton Transactions.
2016;45(39): 15541–15551. DOI: https://doi.org/10.1039/C6DT02378A
9. Dorzhieva S. G., Tushinova Y. L., Bazarov B. G.,
Bazarova Z. G., Nepomniashchikh A. I., Shendrik R. Y.
Luminescence of Ln-Zr molybdates. Bulletin of the
Russian Academy of Sciences: Physics. 2015;79(2):
276–279. DOI: https://doi.org/10.3103 /S1062873815020070
10. Liao J., Zhou D., Yang B., Liu R., Zhang Q. and
Zhou Q. H. Sol-gel preparation and photoluminescence
properties of CaLa2(MoO4)4: Eu3+ phosphors. Journal of
Luminescence. 2013;134: 533–538. DOI: https://doi.org/10.1016/j.jlumin.2012.07.033
11. Kozhevnikova N. M. Synthesis and luminescence
properties of a Li3Ba2La3(MoO4)8: Er3+ phosphor with a
scheelite-like structure. Inorganic Materials.
2019;55(6): 607–611. DOI: https://doi.org/10.1134/s0020168519060098
12. Sofich D., Shendrik R. Y., Dorzhieva S. G.,
Chimitova O. D., Bazarov B. G., Tushinova Y. L.,
Bazarova Z. G. Luminescence of Pr3+ and Nd3+ ions in
double molybdates. Physics of the Solid State.
2019;61(5): С. 844-846. DOI: https://doi.org/10.1134/s1063783419050342
13. Guo C., Yang H.K., Jeong J.-H. Preparation and
luminescent properties of phosphor MgD2(MoO4)4: Eu3+
(M=Ca, Sr, and Ba). Journal of Luminescence. 2010;130(8):
1390–1393 DOI: https://doi.org/10.1016/j.jlumin.2010.02.052
14. Liao C., Cao R., Wang W., Hu W., Zheng G.,
Luo Z. and Liu P. Photoluminescence properties and
energy transfer of NaY(MoO4)2: R (R = Sm3+ /Bi3+, Tb3+ /
Bi3+, Sm3+ /Tb3+) phosphors. Materials Research Bulletin.
2018;97: 490–496. DOI: https://doi.org/10.1016/j.materresbull.2017.09.053
15. Song M., Liu Y., Liu Y., Wang L., Zhang N.,
Wang X., Huang Z., Ji C. Sol-gel synthesis and
luminescent properties of a novel KBaY(MoO4)3: Dy3+
phosphor for white light emission. Journal of
Luminescence. 2019; 211: 218–226. DOI: https://doi.org/10.1016/j.jlumin.2019.03.052
16. Grossman V. G., Bazarova J. G., Molokeev M. S.
and Bazarov B. G. New triple molybdate K5ScHf(MoO4)6:
Synthesis, properties, structure and phase equilibria
in the M2MoO4–Sc2(MoO4)3–Hf(MoO4)2 (M = Li, K)
systems. Journal of Solid State Chemistry. 2020;283:
121- 143. D O I : https://doi.org/10.1016/j.jssc.2019.121143
17. Bazarova Zh. G., Grossman V. G., Bazarov B. G.,
Tushinova Yu. L., Chimitova O. D., Bazarova Ts. T.
Phase diagrams for the M2MoO4-Ln2(MoO4)3-Hf(MoO4)2
systems, where M = Li-Cs, Tl and Ln = La-Lu. Chimica
Techno Acta. 2017;4(4): 224–230. DOI: https://doi.org/10.15826/chimtech/2017.4.4.03
18. Braziulis G., Janulevicius G., Stankeviciute R.,
Zalga A. Aqueoussol–gelsynthesisand
thermoanalytical study of the alkaline earth molybdate
precursors. Journal of Thermal Analysis and Calorimetry.
2014;118(2): 613–621. DOI: https://doi.org/10.1007/s10973-013-3579-0
19. Bazarov B. G., Klevcova R. F., Cyrendorzhieva
A. D., Glinkaja L. A., Bazarova Zh. G. Crystal
structure of triple molybdate Rb5FeHf(MoO4)6 – a new
phase in the Rb2MoO4 - Fe2(MoO4)3 - Hf(MoO4)2 system.
Journal of Structural Chemistry. 2004;45(6); 993–998.
DOI: https://doi.org/10.1007/s10947-005-0091-9

Downloads

Download data is not yet available.

Author Biographies

Aleksandra V. Logvinova, Baikal Institute of Nature Management, Siberian Branch of the Russian Academy of Sciences, 6 ul. Sakhyanova, Ulan-Ude 670047, Republic of Buryatia, Russian Federation

PhD student, Laboratory
of Oxide Systems, Baikal Institute of Nature
Management, Siberian Branch of the Russian Academy
of Sciences (BINM SB RAS), Ulan-Ude, Russian
Federation; e-mail: Logvinova_Alexsandra@bk.ru.

Bair G. Bazarov, Baikal Institute of Nature Management, Siberian Branch of the Russian Academy of Sciences, 6 ul. Sakhyanova, Ulan-Ude 670047, Republic of Buryatia, Russian Federation; Buryat State University, 24a ul. Smolina, Ulan-Ude 670000, Republic of Buryatia, Russian Federation

DSc in Physics and Mathematics,
Leading Researcher, Laboratory of Oxide Systems,
Baikal Institute of Nature Management, Siberian
Branch of the Russian Academy of Sciences (BINM SB
RAS), Associate Professor at the Department of
Inorganic and Organic chemistry, Banzarov Buryat
State University, Ulan-Ude, Russian Federation;
e-mail: bazbg@rambler.ru.

Jibzema G. Bazarova, Baikal Institute of Nature Management, Siberian Branch of the Russian Academy of Sciences, 6 ul. Sakhyanova, Ulan-Ude 670047, Republic of Buryatia, Russian Federation

DSc in Chemistry, Chief
Scientist, Laboratory of Oxide Systems, Baikal Institute
of Nature Management, Siberian Branch of the Russian
Academy of Sciences (BINM SB RAS), Ulan-Ude,
Russian Federation; e-mail: jbaz@binm.ru.

Published
2020-09-21
How to Cite
Logvinova, A. V., Bazarov, B. G., & Bazarova, J. G. (2020). Obtaining Iron (III) – Containing Triple Molybdate K5FeZr(MoO4)6 by Sol-Gel Technology. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 22(3), 353-359. https://doi.org/10.17308/kcmf.2020.22/2966
Section
Статьи