Possibilities and peculiarities of spray technologies in organic synthesis
Abstract
Size effects considerably change the state and physicochemical properties of dispersal systems. The peculiarities of chemical processes occurring in small (nano, pico, and femtolitre) volumes are of a great importance for the production technologies of unique materials. The aim of this work was the experimental confirmation of size effects during chemical processes in small volumes and their interpretation based on the concepts of chemical thermodynamics.
The object of the study consisted in reactions of organic synthesis conducted in ensembles of sessile drops formed by aqueous solutions of organic compounds with the participation of a gaseous medium. The methods of optical microscopy with digital image processing were used for observation. The experiments definitely demonstrate the influence of geometric parameters (radius, contact angle) on the kinetics of phase and chemical transformations in polydisperse ensembles of sessile drops of organic and aqueous-organic mixtures interacting with volatile reagents in a gaseous medium. These features are manifested in the kinetics of changes in the size of drops as well as in the morphology of products obtained
by their evaporation.
The interpretation of size effects in the framework of equilibrium chemical thermodynamics explains the shifts in chemical equilibrium and changes in the reaction rate. The equilibrium conditions arising in drops of different volumes during mass transfer with the gas phase were described. It is stated that the most important factor in the processes of organic synthesis using spray technologies is the high surface activity of organic substances. Comprehension and practical application of these peculiarities allows adjusting the reaction rate, improving the mutual solubility of partially miscible reagents, and affecting the composition and properties of the final product
REFERENCES
1. Tretyakov Y. D., Lukashin A. V., Eliseev A. A.
Synthesis of functional nanocomposites based on
solid-phase nanoreactors. Russ. Chem. Rev. 2004;73(9):
899–921. DOI: https://elibrary.ru/item.asp?id=9083418
2. Nanoreactor Engineering for Life Sciences and
Medicine. Ostafin A., Landfester K. (eds.). AR Tech
house; 2009. 283 p.
3. Chen C., Chen Z., Zeng X., Fang X., Zhang Z.
Fabrication and characterization of nanocapsules
containingn-dodecanol by mini emulsion
polymerization using interfacial redox initiation.
Colloid Polym Sci. 2012;290(4): 307–314. DOI: http://dx.doi.org/10.1007/s00396-011-2545-2
4. Vriezema D. M., Garcia P. M. L., Sancho Oltra N.,
Hatzakis N. S., Kuiper S. M., Nolte R. J. M., et al.
Positional assembly of enzymes in polymersome
nanoreactors for cascade reactions. Angew Chemie Int
Ed. 2007;46(39): 7378–7382. DOI: https://doi.org/10.1002/anie.200701125
5. Wheeler A. Reaction rates and selectivity in
catalyst pores. Advances in Catalysis. 1951;3: 249–327.
DOI: https://doi.org/10.1016/S0360-0564(08)60109-1
6. Zhukalin, D. A. Droplet reactor in nanotechnology.
Kondensirovannye Sredy I Mezhfaznye Granitsy =
Condensed Matter and Interphases, 2018;20(1): 66–74.
DOI: https://doi.org/10.17308/kcmf.2018.20/478 (In
Russ., abstract in Eng.)
7. Jambovane S. R., Nune S. K., Kelly R. T.,
McGrail B. P., Wang Z., Nandasiri M. I., et al. Continuous,
one-pot synthesis and post-synthetic modification of
nanoMOFs using droplet nanoreactors. Sci. Rep. 2016;6:
36657-9. DOI: https://doi.org/10.1038/srep36657
8. Penyazkov O. G., Saverchenko V. I., Fisenko S. P.
Low-temperature synthesis of nanoparticles in the
process of evaporation of femtoliter droplets of a
solution at a low pressure. J. Eng. Phys. Thermophys.
2014;87(4): 796–801. DOI: https://doi.org/10.1007/s10891-014-1074-5
9. Jaworski R., Pawlowski L., Pierlot C., Roudet F.,
Kozerski S., Petit F. Recent developments in suspension
plasma sprayed titanium oxide and hydroxyapatite
coatings. J. Therm. Spray. Technol. 2010;19(1–2):
240–247. DOI: https://doi.org/10.1007/s11666-009-9425-z
10. Al-Hamdani K. S., Murray J. W., Hussain T.,
Clare A. T. Heat-treatment and mechanical properties
of cold-sprayed high strength Al alloys from satellited
feedstocks. Surf. Coatings. Technol. 2019;374: 21–31.
DOI: https://doi.org/10.1016/j.surfcoat.2019.05.043
11. Mesquita R. A., Barbosa C. A. High-speed steels
produced by conventional casting, spray forming and
powder metallurgy. Mater. Sci. Forum. 2005;498–499:
244–50. DOI: https://doi.org/10.4028/www.scientific.net/MSF.498-499.244
12. Bronstein L. M., Sidorov S. N., Valetsky P. M.
Nanostructured polymeric systems as nanoreactors
for nanoparticle formation. Russ. Chem. Rev. 2004;73(5):
501–515. DOI: https://doi.org/10.1070/RC2004v073n05ABEH000782
13. Zheng X., Lv Y., Kuang Q., Zhu Z., Long X.,
Yang S. Close-packed colloidal SiO2 as a nanoreactor:
Generalized synthesis of metal oxide mesoporous
single crystals and mesocrystals. Chem. Mater.
2014;26(19): 5700–5709. DOI: https://pubs.acs.org/doi/10.1021/cm5025475
14. Len’shina N. A., Arsenyev M. V., Shurygina M. P.,
Chesnokov S. A., Abakumov G. A. Photoreduction of
o-benzoquinone moiety in mono- and poly(quinone
methacrylate) and on the surface of polymer matrix
pores. High Energy Chem. 2017;51(3): 209–214. DOI:
https://doi.org/10.1134/s0018143917030080
15. Wanning S., Süverkrüp R., Lamprecht A.
Pharmaceutical spray freeze drying. Int. J. Pharm.
2015;488(1–2): 136–153. DOI: https://doi.org/10.1016/j.ijpharm.2015.04.053
16. Hergeth W., Jaeckle C., Krell M. Industrial
process monitoring of polymerization and spray drying
processes. Polym. React. Eng. 2003;11(4): 663–714.
DOI: https://doi.org/10.1081/PRE-120026369
17. Sinha-Ray S. Spray in Polymer Processing. In:
Basu S., Agarwal A., Mukhopadhyay A., Patel C. (eds)
Droplet and Spray Transport: Paradigms and
Applications. Energy, Environment, and Sustainability.
Springer, Singapore; 2017. p. 31–54. DOI: https://doi.org/10.1007/978-981-10-7233-8_3
18. Akgün E., Hubbuch J., Wörner M. Perspectives
of aerosol-photopolymerization: Nanoscale polymer
particles. Chem. Eng. Sci. 2013;101: 248–252. DOI:
https://doi.org/10.1016/j.ces.2013.06.010
19. Akgün E., Muntean A., Hubbuch J., Wörner M.,
Sangermano M. Cationic aerosol photopolymerization.
Macromol. Mater. Eng. 2015;300(2): 136–139. DOI:
https://doi.org/10.1002/mame.201400211
20. Zhang Y., Suslick K. S. Synthesis of poly(3,4-
ethylenedioxythiophene) microspheres by ultrasonic
spray polymerization (USPo). Chem. Mater. 2015;27(22):
7559–7563. DOI: https://doi.org/10.1021/acs.chemmater.5b03423
21. Zhang W., Cue B. W. (eds). Green techniques for
organic synthesis and medicinal chemistry. Chichester,
UK: John Wiley & Sons, Ltd; 2012. 842 p. DOI: https://doi.org/10.1002/9780470711828
22. Carné-Sánchez A., Imaz I., Cano-Sarabia M.,
Maspoch D. A spray-drying strategy for synthesis of
nanoscale metal–organic frameworks and their
assembly into hollow superstructures. Nat. Chem.
2013;5(3): 203–211. DOI: https://doi.org/10.1038/nchem.1569
23. Fedoseev V. B., Fedoseeva E. N. Samoformirovanie
ansamblei kapel vodno-organicheskikh i vodnopolimernykh
rastvorov v parakh letuchikh
komponentov. In: Oligomery-2019: Sbornik trudov
XVIII Mezhdunarodnoi konferentcii po khimii i
fizikokhimii oligomerov, 16-21 September 2019. [Selfformation
of drops ensembles of aqueous-organic and
aqueous-polymer solutions in vapour of volatile
components. In: Oligomers: Proc. 18th Int. Conf. on the
Chemistry and Physical Chemistry of Oligomers]
Chernogolovka: IPKHF RAN Publ.; 2019. T1. p. 218–235. (In Russ.)
24. Titaeva E. K., Fedoseev V. B. Specific features
of crystallization of supersaturated solution in
femtoliter-volume systems. Crystallogr. Reports.
2014;59(3): 437–441. DOI: https://doi.org/10.1134/s1063774514030195
25. Fedoseev V. B., Fedoseeva E. N. States of a
supersaturated solution in limited-size systems. JETP
Lett. 2013;97(7): 408–412. DOI: https://doi.org/10.1134/s0021364013070059
26. Fedoseev V. B., Fedoseeva E. N. Size effects
during phase transformations in stratifying systems.
Russ. J. Phys. Chem. A. 2014;88(3): 436–441. DOI:
https://doi.org/10.7868/s0044453714020083
27. Fedoseev V. B., Fedoseeva E. N. Formation of
Bi- and polymodal distributions and the non-ostwald
behavior of disperse systems. J. Eng. Phys. Thermophys.
2019;92(5): 1191–1200. DOI: https://doi.org/10.1007/s10891-019-02033-2
28. Fedoseeva E. N., Fedoseev V. B. Non-Ostwald
behavior of disperse systems in evaporation and
crystallization of droplets of water–organic solutions.
Technical Physics, 2020;65(6): 839–845. DOI: https://
doi.org/10.1134/S1063784220060110
2 9 . Vorozhtcov N . N . Osnovy sinteza
promezhutochnykh produktov i krasitelei [Basics of the
synthesis of industrial products and dyes]. Moscow-
Leningrad: Gosudarstvennoe himiko-tekhnicheskoe
izdatel`stvo ONTI Publ; 1934. 540 р. (In Russ.)
30. Vigdorovich V. I. Some property features of
nanostructured materials as participants of chemical
processes. Kondensirovannye Sredy I Mezhfaznye
Granitsy = Condensed Matter and Interphases,
2018;20(2): 211–217. DOI: https://doi.org/10.17308/kcmf.2018.20/512 (In Russ., abstract in Eng.)
31. Shishulin A. V., Fedoseev V. B. On some
peculiarities of stratification of liquid solutions within
pores of fractal shape. J. Mol. Liq. 2019;278: 363–367.
DOI: https://doi.org/10.1016/j.molliq.2019.01.050
32. Shishulin A. V., Fedoseev V. B. On Mutual
Solubility in Submicron-Sized Particles of the Pt–Au
Catalytic System. Kinetics and Catalysis. 2019;60(3):
315–319. DOI: https://doi.org/10.1134/s0023158419030121
33. Shishulin A. V., Shishulina A. V. Equilibrium
phase composition and mutual solubilities in fractal
nanoparticles of the W-Cr heavy pseudo-alloy. Physical
and Chemical Aspects of the Study of Clusters,
Nanostructures and Nanomaterials. 2019;(11): 380–388.
DOI: https://doi.org/10.26456/pcascnn/2019.11.380
Downloads
Copyright (c) 2020 Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.